Перейти к содержанию

Поиск

Показаны результаты для тегов 'телескоп'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Новости
    • Новости сервера
    • Новости спутниковых провайдеров
    • Новости цифровой техники
    • Новости спутников и космических технологий
    • Новости телеканалов
    • Новости операторов связи, кабельного и IPTV
    • Новости сети интернет и софта (software)
    • Архив новостей
  • IPTV
    • Обсуждение IPTV каналов
    • IPTV на iptv-приставках
    • IPTV на компьютере
    • IPTV на телевизорах Smart TV
    • IPTV на спутниковых ресиверах
    • IPTV на мобильных устройствах
    • Kodi (XBMC Media Center)
    • FAQ по IPTV
  • IPTV in English
    • FAQ (Manuals)
    • Price
    • Discussions
  • Cпутниковое ТВ
    • Основной раздел форума
    • Кардшаринг
    • Транспондерные новости, настройка антенн и приём
    • Dreambox/Tuxbox/IPBox/Sezam и др. на базе Linux
    • Ресиверы Android
    • Другие ресиверы
    • Galaxy Innovations (без OS Linux)
    • Обсуждение HD\UHD телевизоров и проекторов
    • DVB карты (SkyStar, TwinHan, Acorp, Prof и др.)
    • OpenBOX F-300, F-500, X540, X560, X590, X-800, X-810, X-820, S1
    • Openbox X-730, 750, 770CIPVR, 790CIPVR
    • OpenBOX 1700(100), 210(8100),6xx, PowerSky 8210
    • Golden Interstar
    • Globo
    • Спутниковый интернет/спутниковая рыбалка
  • Общий
    • Курилка
    • Барахолка

Категории

  • Dreambox/Tuxbox
    • Эмуляторы
    • Конфиги для эмуляторов
    • JTAG
    • Picons
    • DM500
    • DM600
    • DM7000
    • DM7020
    • Программы для работы с Dreambox
    • DM7025
    • DM500 HD
    • DM800 HD
    • DM800 HDSE
    • DM8000 HD
    • DM 7020 HD
    • DM800 HD SE v2
    • DM 7020 HD v2
    • DM 500 HD v2
    • DM 820 HD
    • DM 7080
    • DM 520/525HD
    • Dreambox DM 900 Ultra HD
    • Dreambox DM920 Ultra HD
  • Openbox HD / Skyway HD
    • Программы для Openbox S5/7/8 HD/Skyway HD
    • Addons (EMU)
    • Ключи
    • Skyway Light 2
    • Skyway Light 3
    • Skyway Classic 4
    • Skyway Nano 3
    • Openbox S7 HD PVR
    • Openbox S6 PRO+ HD
    • Openbox SX4C Base HD
    • Skyway Droid
    • Skyway Diamond
    • Skyway Platinum
    • Skyway Nano
    • Skyway Light
    • Skyway Classic
    • Openbox S6 HD PVR
    • Openbox S9 HD PVR
    • Skyway Classic 2
    • Openbox S4 PRO+ HDPVR
    • Openbox S8 HD PVR
    • Skyway Nano 2
    • Openbox SX6
    • Openbox S6 PRO HDPVR
    • Openbox S2 HD Mini
    • Openbox S6+ HD
    • Openbox S4 HD PVR
    • Skyway Classic 3
    • Openbox SX4 Base
    • Openbox S3 HD mini
    • Openbox SX4 Base+
    • Openbox SX9 Combo
    • Openbox AS1
    • Openbox AS2
    • Openbox SX4
    • Openbox SX9
    • Openbox S5 HD PVR
    • Formuler F3
    • Openbox Formuler F4
    • Openbox Prismcube Ruby
    • Skyway Droid 2
    • Openbox S2 HD
    • Openbox S3 HD Micro
    • Skyway Air
    • Skyway Virgo
    • Skyway Andromeda
    • Openbox S1 PVR
    • Formuler4Turbo
    • Open SX1 HD
    • Open SX2 HD
    • Openbox S3 HD mini II
    • Openbox SX2 Combo
    • Openbox S3HD CI II
  • Openbox AS4K/ AS4K CI
  • Opticum/Mut@nt 4K HD51
  • Mut@nt 4K HD60
  • Octagon SF4008 4K
  • OCTAGON SF8008 MINI 4K
  • Octagon SF8008 4K
  • GI ET11000 4K
  • Formuler 4K S Mini/Turbo
  • VU+ 4K
    • Прошивки VU+ Solo 4K
    • Прошивки VU+ Duo 4K
    • Прошивки VU+ UNO 4K
    • Прошивки VU+ Uno 4K SE
    • Прошивки VU+ Ultimo 4K
    • Прошивки VU+ Zero 4K
    • Эмуляторы VU+ 4K
    • Vu+ Duo 4K SE
  • Galaxy Innovations
    • GI 1115/1116
    • GI HD Slim Combo
    • GI HD Slim
    • GI HD Slim Plus
    • GI Phoenix
    • GI S9196Lite
    • GI S9196M HD
    • GI Spark 2
    • GI Spark 2 Combo
    • GI Spark 3 Combo
    • Программы для работы с Galaxy Innovations
    • Эмуляторы для Galaxy Innovations
    • GI S1013
    • GI S2020
    • GI S2028/S2026/2126/2464
    • GI S2030
    • GI S2050
    • GI S3489
    • GI ST9196/ST9195
    • GI S2121/1125/1126
    • GI S6199/S6699/ST7199/ST7699
    • GI S8290
    • GI S8680
    • GI S8120
    • GI S2138 HD
    • GI S2628
    • GI S6126
    • GI S1025
    • GI S8895 Vu+ UNO
    • GI Vu+ Ultimo
    • GI S2238
    • GI Matrix 2
    • GI HD Mini
    • GI S2038
    • GI HD Micro
    • GI HD Matrix Lite
    • GI S1027
    • GI S1015/S1016
    • GI S9895 HD Vu+ Duo
    • GI S8180 HD Vu+ Solo
    • Vu+ SOLO 2
    • Vu+ Solo SE
    • Vu+ Duo 2
    • Vu+ Zero
    • GI ET7000 Mini
    • GI Sunbird
    • GI 2236 Plus
    • GI HD Micro Plus
    • GI HD Mini Plus
    • GI Fly
    • GI HD Slim 2
    • GI HD Slim 2+
    • GI HD Slim 3
    • GI HD Slim 3+
  • IPBox HD / Sezam HD / Cuberevo HD
    • Программы для работы с IPBox/Sezam
    • IPBox 9000HD / Sezam 9100HD / Cuberevo
    • IPBox 900HD / Cuberevo Mini
    • IPBox 910HD / Sezam 902HD / Sezam 901HD
    • IPBox 91HD / Sezam 900HD / Cuberevo 250HD
    • Addons
  • HD Box
    • HD BOX 3500 BASE
    • HD BOX 3500 CI+
    • HD BOX 4500 CI+
    • HD BOX 7500 CI+
    • HD BOX 9500 CI+
    • HD BOX SUPREMO
    • HD BOX SUPREMO 2
    • HD BOX TIVIAR ALPHA Plus
    • HD BOX TIVIAR MINI HD
    • HD BOX HB 2017
    • HD BOX HB 2018
    • HD BOX HB S100
    • HD BOX HB S200
    • HD BOX HB S400
  • Star Track
    • StarTrack SRT 100 HD Plus
    • StarTrack SRT 300 HD Plus
    • StarTrack SRT 2014 HD DELUXE CI+
    • StarTrack SRT 3030 HD Monster
    • StarTrack SRT 400 HD Plus
    • StarTrack SRT 200 HD Plus
  • Samsung SmartTV SamyGo
  • DVB карты
    • DVBDream
    • ProgDVB
    • AltDVB
    • MyTheatre
    • Плагины
    • DVBViewer
    • Кодеки
    • Драйвера
  • Openbox F-300, X-8XX, F-500, X-5XX
    • Программы для работы с Openbox
    • Ключи для Openbox
    • Готовые списки каналов
    • Все для LancomBox
    • Openbox F-300
    • Openbox X-800
    • Openbox X-810
    • Openbox X-820
    • Openbox F-500
    • Openbox X-540
    • Openbox X-560
    • Openbox X-590
  • Openbox X-730PVR, X-750PVR, X-770CIPVR, X-790CIPVR
    • Программы для работы с Openbox
    • Ключи
    • Openbox X-730PVR
    • Openbox X-750PVR
    • Openbox X-770CIPVR
    • Openbox X-790CIPVR
  • OpenBOX 1700[100], 210[8100], 6xx, PowerSky 8210
    • Программы для работы с Openbox/Orion/Ferguson
    • BOOT
    • Ключи
    • OpenBOX 1700[100]
    • OpenBOX 210[8100]
    • OpenBOX X600 CN
    • OpenBOX X610/620 CNCI
    • PowerSky 8210
  • Globo
    • Globo HD XTS703p
    • Программы для работы с Globo
    • Ключи для Globo
    • Globo 3xx, 6xxx
    • Globo 4xxx
    • Globo 7010,7100 A /plus
    • Globo 7010CI
    • Globo 7010CR
    • Ferguson Ariva 100 & 200 HD
    • Opticum 8000
    • Opticum 9000 HD
    • Opticum 9500 HD
    • Globo HD S1
    • Opticum X10P/X11p
    • Opticum HD 9600
    • Globo HD X403P
    • Opticum HD X405p/406
    • Opticum X80, X80RF
  • Golden Interstar
    • Программы для работы с Interstar
    • Все для кардшаринга на Interstar
    • BOOT
    • Ключи
    • Golden Interstar DSR8001PR-S
    • Golden Interstar DSR8005CIPR-S
    • Golden Interstar DSR7700PR
    • Golden Interstar DSR7800SRCIPR
    • Golden Interstar TS8200CRCIPR
    • Golden Interstar TS8300CIPR-S
    • Golden Interstar TS8700CRCIPR
    • Golden Interstar S100/S801
    • Golden Interstar S805CI
    • Golden Interstar S770CR
    • Golden Interstar S780CRCI
    • Golden Interstar TS830CI
    • Golden Interstar TS870CI
    • Golden Interstar TS84CI_PVR
    • Golden Interstar S890CRCI_HD
    • Golden Interstar S980 CRCI HD
    • Golden Interstar GI-S900CI HD
    • Golden Interstar S905 HD
    • Box 500
  • SkyGate
    • Программы для работы с ресиверами SkyGate
    • Списки каналов и ключей
    • SkyGate@net
    • SkyGate HD
    • SkyGate HD Plus
    • SkyGate Gloss
    • Sky Gate HD Shift
  • Samsung 9500
    • Программы для работы с Samsung 9500
    • Программное обеспечение для Samsung 9500
  • Openbox 7200
    • Прошивки
    • Эмуляторы
    • Программы для работы с Openbox 7200
    • Списки каналов
  • Season Interface
  • Прошивки для приставок MAG

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


  1. Не желающий уходить по-доброму, космический телескоп «Кеплер» продолжает собирать научные данные, не смотря на неисправный двигатель и катастрофически низкий уровень топлива. Мы уже почти похоронили этот космический телескоп за 600 миллионов долларов, но вчера NASA удивило всех неожиданной новостью: «Космический телескоп «Кеплер» начал собирать научные данные 29 августа в ходе своей 19-й кампании наблюдения. После выхода из режима сна конфигурация космического аппарата была изменена из-за необычного поведения одного из двигателей. Предварительные признаки указывают на то, что способность нацеливания телескопа постепенно ухудшается. Остается неясным, сколько осталось топлива. NASA продолжает следить за здоровьем и работоспособностью космического аппарата». Невероятно. После девяти лет активных научных исследований, клинической смерти в 2013 году и 2327 подтвержденных экзопланет, «Кеплер» продолжается оставаться маленьким космическим телескопом, который смог. «Кеплер»: живее всех живых 24 августа «Кеплер» был переведен в спящий режим после аномального падения давления топлива — но не до передачи данных, собранных в ходе 18-й кампании фазы K2 миссии. По мере того, как космический аппарат погружался в спячку и ожидал смерти, диспетчеры тщательно следили за здоровьем телескопа, пытаясь определить, может ли он провести еще исследование и какие функции будут ему при этом доступны. Оказалось, что есть еще порох в пороховницах и «Кеплер» вернулся к активному дежурству 29 августа — хотя и с несколькими ограничениями. Похоже, с «Кеплером» все хорошо, только топливо на исходе и с одним из восьми двигателей проблемы. Кроме того, добавьте еще тот факт, что «Кеплер» может использовать только из четырех колес для смены положения — он использует их для поддержания ориентации с 2013 года.
  2. Космический телескоп Kepler, ведущий поиск экзопланет, вышел из продолжавшегося четыре недели "спящего" режима и возобновил передачу информации в центр управления. Как сообщил в пятницу портал Space.com, в "спящий" режим телескоп перевели в начале июля, чтобы сэкономить топливо для его двигателей ориентации. Передача информации шла через систему Дальней космической связи NASA - антенны, установленные на территории США, Испании и Австралии. Kepler, создание которого обошлось в $600 млн вывели на гелиоцентрическую орбиту в марте 2009 года. Он обращается вокруг Солнца с периодом в 372,5 дней. Задача телескопа - наблюдать за светом примерно 150 тыс. звезд, чтобы отследить тот момент, когда звезда "мигнет". Это означает, что между ней и телескопом прошло небесное тело, возможно, планета. По данным NASA, с помощью Kepler уже удалось обнаружить около 2,6 тыс. экзопланет. Основная миссия аппарата была рассчитана на 3,5 года. В 2013 году у телескопа вышло из строя оборудование, отвечающее за ориентацию в пространстве, и его работу временно приостановили. В 2014 году центру управления удалось стабилизировать положение телескопа и Kepler продолжил работу в рамках программы, получившей обозначение "К2" и предусматривавшей проведение серий наблюдений в течение 80 суток. С тех пор телескоп провел 18 таких серий. В ходе последней он вел наблюдение за участком неба в районе созвездия Рака - областью, которую он уже изучал в 2015 году. Очередная серия начнется 6 августа, но только в том случае, если после нынешней коррекции в двигателях останется достаточно топлива.
  3. Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) продолжает рассказывать о задачах, которые предстоит решать телескопу «Джеймс Уэбб» (James Webb Space Telescope). Названный аппарат станет самой большой космической обсерваторией в истории — размер зеркала равен 6,5 метра. Запуск телескопа многократно переносился: сейчас вывести его в космос планируется в марте 2021 года. Не так давно сообщалось, что «Джеймс Уэбб» в числе прочего займётся исследованием Большого красного пятна на Юпитере. Теперь в NASA рассказали, что аппарату предстоит изучить атмосферы экзопланет. Целями телескопа «Джеймс Уэбб» станут некоторые газовые гиганты за пределами Солнечной системы, которые предстоит обнаружить аппарату TESS. Эта космическая обсерватория была запущена весной нынешнего года. Для обнаружения экзопланет будет применяться метод транзита. Миссия TESS рассчитана как минимум на два года: в течение этого времени аппарат, как ожидается, изучит окружение примерно 200 тыс. звёзд. В перспективе учёные намерены задействовать телескоп «Джеймс Уэбб» для исследования планет, на которых теоретически может существовать жизнь. Специалисты будут изучать окрестности красных карликов — это самые распространённые объекты звёздного типа во Вселенной. Из-за низкой скорости сгорания водорода они имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет. А поэтому существует определённая вероятность наличия жизни в планетных системах таких звёзд.
  4. Большой телескоп азимутальный (БТА), расположенный на горе Семиродники близ посёлка Нижний Архыз Зеленчукского района Карачаево-Черкесской Республики (РФ), возобновит работу осенью. Об этом, как сообщает ТАСС, рассказали в Специальной астрофизической обсерватории РАН. БТА — это крупнейший в России телескоп. Главное зеркало диаметром 605 см весит 42 тонны без учёта оправы, а общая масса системы составляет около 850 тонн. Телескоп был построен ещё в 1975 году. За многие годы эксплуатации поверхностный слой зеркала повредился, что привело к ухудшению его отражающей способности. Поэтому наблюдения с использованием БТА были приостановлены в связи с необходимостью выполнения работ по замене обновлённого зеркала. Модернизация 6-метрового изделия проводилась на предприятии холдинга «Швабе» — Лыткаринском заводе оптического стекла (ЛЗОС) на протяжении 10 лет. Применение передовых высокоточных технологий обработки и контроля крупногабаритной оптики позволило более чем в три раза увеличить угловое разрешение главного зеркала БТА. «Обновлённое зеркало установлено в оправу, но ещё требуются отладочные работы — его будут покрывать тонким слоем алюминия, регулировать. Сейчас наблюдения проводятся на другом телескопе, с диаметром зеркала в один метр, регулярные наблюдения на большом телескопе планируется начать осенью 2018 года», — сообщили в Специальной астрофизической обсерватории РАН.
  5. Космический телескоп Kepler, ведущий поиск экзопланет, переведен в энергосберегательный режим, чтобы успеть передать собранные данные на Землю из-за заканчивающегося топлива. Об этом сообщает в пятницу Национальное управление США по аэронавтике и исследованию космического пространства (NASA) на своем сайте. Передача данных намечена на второе августа, до этого дня телескоп будет находиться в режиме энергосбережения. После этого Kepler будет переведен в обычный режим и продолжит свою наблюдательную миссию до полной выработки топлива. С 12 мая телескоп ведет наблюдение за участком неба в районе созвездия Рака - областью, которую он уже изучал в 2015 году. Собранные данные позволят ученым проверить уже имеющуюся информацию о найденных экзопланетах и обнаружить новые. Космический телескоп Kepler был запущен в марте 2009 года и обращается вокруг Солнца с периодом в 372,5 дней. Основная миссия аппарата была рассчитана на 3,5 года. В 2013 году у телескопа вышло из строя оборудование, отвечающее за ориентацию в пространстве, и его работа была временно прекращена. Однако позже проблема была решена, и Kepler продолжил работу. В марте NASA сообщило, что топливо телескопа подходит к концу, и в течение ближайших месяцев аппарат завершит свою миссию. Задача телескопа - наблюдать за светом примерно 150 тыс. звезд, чтобы отследить тот момент, когда звезда "мигнет". Это означает, что между ней и телескопом прошло небесное тело, возможно, планета. По данным NASA, Kepler уже удалось обнаружить 2650 экзопланет.
  6. Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) сообщило о том, что одной из многочисленных научных задач телескопа «Джеймс Уэбб» станет исследование Большого красного пятна на Юпитере. Напомним, что «Джеймс Уэбб» станет самым мощным орбитальным телескопом в истории. Конструкция этой космической обсерватории предусматривает использование 18 сегментов, которые будут раздвинуты на орбите. Размер этого зеркала составит 6,5 метра. Для изучения Большого красного пятна будет задействован инструмент для работы в среднем диапазоне инфракрасного излучения MIRI (Mid-InfraRed Instrument). Этот прибор состоит из спектрографа и камеры с датчиком, имеющим разрешение 1024 × 1024 пикселя. Используя возможности телескопа «Джеймс Уэбб», специалисты надеются исследовать химическую и тепловую структуры Большого красного пятна на Юпитере. Этот колоссальный атмосферный вихрь был открыт ещё в 1665 году. Размеры вихря достигают 40–50 тыс. километров в длину и 13–16 тыс. километров в ширину. Пятно меняется в размерах и изменяет свой цвет на протяжении нескольких веков наблюдений. Исследователи надеются, что данные, полученные с борта нового телескопа, помогут разгадать загадку необычного цвета пятна. Кроме того, учёные постараются выяснить, генерируется ли внутри этого вихря тепло. Между тем в NASA назвали новую дату запуска телескопа «Джеймс Уэбб». Отправить аппарат в космос планировалось в мае 2020 года, но теперь говорится о марте 2021-го.
  7. Аэрокосмическое агентство NASA получило первый снимок, сделанный новым космическим телескопом TESS (Transiting Exoplanet Survey Satellite), запуск которого состоялся в прошлом месяце. Аппарат предназначен для поиска новых экзопланет. Фотография, которую сотрудники NASA получили 17 мая и опубликовали в открытый доступ днем позже, была сделана еще 26 апреля, когда телескоп находился примерно в 8000 километрах от поверхности Луны. Естественный спутник нашей планеты телескоп использовал для совершения гравитационного маневра, благодаря которому аппарат вышел на запланированную и довольно продолговатую орбиту вокруг Земли. Со слов специалистов из NASA, до настоящего момента на этой орбите еще не работал ни один из запущенных космических аппаратов. «Это очень эллиптическая орбита с максимальным углом обзора на очень большую часть звездного неба», — сообщило агентство NASA в своем официальном заявлении. Последний запуск двигателей телескопа для закрепления орбиты планируется осуществить 30 мая. После завершения проверки всех систем и калибровки камер, аппарат приступит к своей двухгодичной запланированной космической миссии. С помощью одной из камер TESS уже получил первое изображение. Телескоп сделал снимок центральной части Центавра — созвездия южного полушария неба, — и показал на нем более 200 000 звезд. «В верхнем правом углу снимка наблюдается край туманности Угольный мешок. Правее и ниже его можно видеть очень яркую звезду Бета Центавра (Хадар). Благодаря своим четырем камерам телескоп TESS сможет покрыть область более чем в 400 раз превышающую ту, что мы видим на этом снимке», — отмечают специалисты NASA. Ученые добавляют, что первое изображение научного уровня ожидается получить в июне. TESS предназначен для поиска новых экзопланет транзитным методом. Аппарат будет следить за яркостью звезд в надежде обнаружить изменения в этом показателе. Таким же методом обнаружения новых миров пользуется космический телескоп «Кеплер» — на транзитный метод приходится более 70 процентов из 3700 найденных и подтвержденных им экзопланет. Новый телескоп призван заменить и даже превзойти «Кеплер» по части общего количества обнаруженных экзопалент. Главными целями TESS станут звезды, расположенные в относительной близости к нашей системе. Напомним, что «Кеплер» открывал планеты не только в ближайшем окружении, но и весьма удаленных от нас системах. Кроме того, благодаря использованию более современных научных инструментов, TESS сможет проводить более глубокие исследования обнаруженных миров. В будущем возможность и эффективность таких исследований будут существенно расширены. Например, благодаря космическому телескопу «Джеймс Уэбб» (JWST), запуск которого (на данный момент) запланирован на 2020 год. Ученые считают, что «Уэбб» сможет провести анализ по крайней мере нескольких десятков из открытых в будущем TESS экзопланет на предмет наличия воды, кислорода, метана и других газов в их атмосферах. Стоимость миссии телескопа TESS оценивается в 200 миллионов долларов. Запуск аппарата с помощью ракеты SpaceX Falcon 9 обошелся аэрокосмическому агентству NASA в дополнительные 87 миллионов долларов.
  8. В темном безбрежном космосе постоянно происходит большое число взрывов. Одно из таких событий, называемое быстро эволюционирующей световой вспышкой (Fast-Evolving Luminous Transient, FELT), ставило в тупик астрономов на протяжении десятилетия из-за малой продолжительности. Теперь космический телескоп НАСА Kepler («Кеплер») – построенный для «охоты на планеты», лежащие на орбитах вокруг звезд нашей Галактики – был также использован для наблюдения вспышки типа FELT и выяснения ее происхождения. Способность телескопа Kepler измерять малейшие изменения потока света, идущего от звезды, позволила астрономам быстро подобрать нужную модель этого явления и исключить альтернативные ей сценарии. Исследователи пришли к выводу, что источником вспышки является звезда, которая коллапсирует и взрывается как сверхновая. Отличие ее от классических сверхновых состоит в том, что звезда окружена одной или более оболочками из газа и пыли. Когда ударная волна от взрыва звезды врезается в эти оболочки, большая часть кинетической энергии превращается в свет. Эта вспышка продолжается в течение всего лишь нескольких суток – в то время как обычная сверхновая освещает небо примерно в 10 раз дольше. Ранее для объяснения вспышек FELT-типа предлагались различные гипотезы: источниками этих явлений называли послесвечение гамма-всплесков; взаимодействие сверхновой и магнетара (нейтронной звезды с мощным магнитным полем) или «неудавшиеся» сверхновые типа Ia. Все эти гипотезы позволили исключить новые данные, собранные при помощи космического телескопа Kepler. Исследование представлено в журнале Nature Astronomy.
  9. Известный астроном Джонатан Макдауэлл сообщил, что орбитальная обсерватория «Fermi» временно вышла из строя, в результате чего может потерять значительную часть своей функциональности. Причиной стал заклинивший двигатель, который управляет положением одной из ее солнечных панелей, сообщил астроном в своем Twitter. Уточняется, что неполадки в работе двигателя одного из блоков солнечных панелей были зафиксированы в пятницу, 16 марта, в 08:00 по московскому времени. "В результате этого зонд перешел в безопасный режим и отключил все инструменты. Сейчас специалисты NASA пытаются раскрыть причину неполадки, и рассматривают возможность продолжать наблюдения, используя заклинившую панель", — Джонатан Макдауэлл. По мнению инженеров NASA, по причине проблем с двигателями, на дальнейшей научной карьере «Fermi» может быть вообще поставлен крест. Вместе с тем специалистам еще не удалось понять, что именно перестало функционировать в двигателе панели. Они отмечают, что, если сбой имеет электронную, а не техническую природу, то проблема не обязательно может быть фатальной для «Fermi». Впервые на орбиту гамма-телескоп был запущен 11 июня 2008 года. На протяжении десяти лет работы он открыл тысячи новых гамма-всплесков, а также гигантских черных дыр и других объектов, которые излучают свет высоких энергий. Ранее ученые из ассоциации университетов по изучения космоса (USRA) в Хьюстоне установили, что во время полетов в космос сетчатка и оптические нервы человеческого глаза могут «растягиваться». В результате это приводит к ухудшению зрения, а при долгом пребывании в космосе — к слепоте.
  10. За девять лет своей работы космический телескоп «Кеплер» успел совершить множество удивительных открытий. С помощью этого аппарата ученые подтвердили существование 2245 экзопланет, а также обнаружили еще 2342 кандидата в список этих небесных тел. Но всему когда-нибудь наступает конец. Вот и телескоп «Кеплер» совсем скоро уйдет в историю как один из самых удивительных инструментов, разработанных человеческой цивилизацией. Дело в том, что у телескопа заканчивается топливо. По расчетам специалистов из NASA, его у космического аппарата осталось всего на несколько месяцев. «Наши нынешние расчеты показывают, что запасов топлива у «Кеплера» осталось всего на несколько месяцев. Однако следует отметить, что аппарат за время своей работы уже успел нас удивить своей производительностью», — сообщил в пресс-релизе агентства NASA системный инженер космической миссии «Кеплер» Чарли Собек. «Мы понимаем и готовы к тому, что вскоре телескоп завершит свою научную деятельность, но до того момента, как его топливо полностью иссякнет, мы будем продолжать работу с ним». Говоря об удивлении, Собек, вероятнее всего, имеет в виду инцидент, произошедший в 2013 году и уже тогда чуть не поставивший крест на дальнейшей работе телескопа. На тот момент произошла поломка одного из двигателей-маховиков, отвечающих за ориентацию аппарата в пространстве. В итоге инженеры NASA пришли к весьма интересному решению и вместо вышедшего из строя двигателя ориентации в качестве стабилизирующего фактора стали использовать давление солнечного излучения. Так началась новая жизнь «Кеплера», получившая название «миссия K2». С тех пор аппарату приходилось каждые три месяца менять свое направление и исследовать разные части космического пространства. Каждую такую смену направления NASA прозвало «кампаниями» и уже на тот момент выяснило, что топлива у аппарата хватит примерно на 10 таких кампаний. В рамках миссии K2 «Кеплер» завершил 16 исследовательских кампаний. В настоящий момент идет 17-я. Сейчас «Кеплер» находится примерно в 140 миллионах километрах, поэтому даже при желании агентство не может отправить к нему космический аппарат для дозаправки. За оставшееся время команда Собека постарается выжать из него, что называется, последние соки и убедиться в том, что все данные, которые «Кеплер» собрал и еще успеет собрать, будут отправлены на Землю. После того как у телескопа закончится топливо, инженеры миссии уже не смогут запустить его двигатели для ориентации в пространстве, чтобы направить его передающую антенну в сторону Земли. Сам аппарат не оснащен системой, которая показывала бы, сколько топлива у него осталось, поэтому команде NASA остается разве что следить за признаками (падением давления в топливном баке или низкой производительностью двигателей), которые могли бы указывать на окончательную гибель телескопа. Несмотря на скорую и неминуемую гибель телескопа, астрономам в ближайшее время будет чем заняться. Аппарат собрал столько научных данных, что на их полный разбор может потребоваться не один год. Как уже указывалось выше, более 2000 обнаруженных телескопом небесных тел имеют статус кандидатов в экзопланеты, поэтому работы предстоит еще очень много. Кроме того, буквально через месяц ожидается запуск преемника «Кеплера» — транзитного космического телескопа TESS. Старт запланирован на 16 апреля и будет осуществлен с помощью ракеты-носителя Falcon 9 компании SpaceX.
  11. Вода необходима для жизни, однако как она образуется? Для формирования молекулы воды недостаточно просто смешать водород и кислород: нужны специальные условия, которые поддерживаются глубоко внутри ледяных молекулярных облаков, где пыль экранирует облака реагентов от ультрафиолетового излучения, что способствует протеканию реакции образования воды. Строящийся в настоящее время космический телескоп НАСА James Webb («Джеймс Уэбб») будет всматриваться в эти «космические резервуары» в поисках ключей к пониманию происхождения и эволюции воды и других веществ, необходимых планете для того, чтобы она могла стать обитаемой. Молекулярное облако представляет собой расположенное в межзвездном пространстве облако, состоящее из пыли и газа и включающее большое число различных молекул, начиная от молекулярного водорода (H2) и вплоть до сложной органики на основе углерода. Молекулярные облака содержат большую часть воды Вселенной и служат «колыбелями» для новорожденных звезд и обращающихся вокруг них планет. Внутри этих облаков на поверхностях зерен пыли атомы водорода соединяются с кислородом, формируя воду. Углерод соединяется с водородом, формируя метан. Азот соединяется с водородом, формируя аммиак. Все эти молекулы прилипают к поверхности пылинок и накапливаются на них, формируя со временем ледяные слои. Для исследования льда в межзвездном пространстве команда ученых во главе с Мелиссой МакКлюр (Melissa McClure) из Амстердамского университета, Нидерланды, будет использовать спектрографы NIRSpec и MIRI космического телескопа James Webb, которые позволят получить в пять раз более высокое разрешение, по сравнению с любыми другими космическими телескопами, в ближнем и среднем ИК-диапазонах. Астрономы будут наблюдать комплекс Хамелеон, звездообразовательную область, видимую в южном небе. Этот звездный комплекс находится на расстоянии примерно 500 миллионов световых лет от Земли и содержит несколько сотен протозвезд, возраст самых старых из которых составляет всего лишь не более 1 миллиона лет. При прохождении света звезд сквозь богатое льдами межзвездное пространство будет происходить избирательное поглощение, и по наблюдаемым линиям поглощения ученые смогут оценить состав льдов межзвездного пространства.
  12. Астрономы использовали космический телескоп НАСА Hubble («Хаббл») для проведения наиболее точных измерений скорости расширения Вселенной с тех пор, как она была впервые рассчитана примерно столетие назад. Эти результаты могут указывать на протекание во Вселенной весьма необычных процессов. Такое предположение связано с тем, что последние находки «Хаббла» подтверждают расхождение в данных, указывающее на то, что Вселенная расширяется быстрее, чем ожидалось, исходя из ее траектории, наблюдаемой вскоре после Большого взрыва. Исследователи считают, что для объяснения этого несоответствия может понадобиться новая физика. «Научное сообщество сейчас пытается понять значение этого расхождения», - сказал главный автор нового исследования и нобелевский лауреат Адам Рисс из Института исследований космоса с помощью космического телескопа и Университета Джона Хопкинса, оба научных учреждения США. Команда Рисса использовала космический телескоп Hubble на протяжении шести последних лет для уточнения расстояний до галактик, используя для определения расстояний звезды, принадлежащие соответствующим галактикам. Эти измерения используются для расчетов скорости расширения Вселенной с течением времени, давая значение, известное как константа Хаббла. Новое исследование, проведенное этой командой, увеличивает число проанализированных звезд, включая звезды, находящиеся до 10 раз дальше от нас, если сравнивать с предыдущими результатами, полученными при помощи телескопа «Хаббл». Составлено по материалам, предоставленным Центром космических полетов Годдарда НАСА.
  13. Национальное управление США по аэронавтике и исследованию космического пространства (NASA) одобрило использование ракеты-носителя Falcon 9 производства компании SpaceX для доставки на орбиту новейшего телескопа TESS и других значимых грузов в рамках проведения научных миссий. Об этом сообщило издание Space News. Оно ссылается на представленный ранее проект федерального бюджета на 2019 финансовый год. В разделе, посвященном проводимым NASA запускам, сказано, что "в январе 2018 SpaceX успешно прошла сертификацию второй категории", что дает ей право выступить оператором отправки на орбиту аппарата TESS (Transiting Exoplanet Survey Satellite - Спутник по исследованию планет, проходящих перед своей звездой). Это же позже подтвердила официальный представитель аэрокосмического ведомства Шерил Уорнер. Разрешение на проведение таких миссий выдается на каждую конкретную модель ракеты на основании того, сколько раз до этого она успешно выводила грузы на орбиту. Это решение NASA было ожидаемым ввиду успешной статистики запусков, проведенных SpaceX. Однако в 2017 году процесс сертификации несколько затормозился, что даже вызвало обеспокоенность в Конгрессе США. Задержка также привела к смещению графика. Изначально отправка TESS была запланирована на март 2018 года. Более того, сам телескоп уже доставлен к месту старта - в Космический центр Кеннеди во Флориде. Это случилось 12 февраля. В качестве новой даты запуска теперь обозначено 16 апреля. При этом, как уточнили в NASA, о переносе попросила сама SpaceX - компании нужно дополнительное время, чтобы подготовить оборудование согласно всем требованиям управления. Falcon 9 также уже находится на стартовом комплексе. Долго переносить запуск не получится, ведь TESS должен быть запущен в определенное окно с марта по июнь, чтобы его можно было вывести на нужную траекторию. Об этом ранее сообщил Джордж Рикер - глава команды Массачусетского технологического института, которая будет проводить исследования при помощи аппарата. Миссия TESS продлится минимум два года, за это время, как ожидается, он изучит более 200 тыс. звезд с целью выявить на их ярком фоне крохотные пятна, которые могут оказаться планетами. Всего ученные рассчитывают обнаружить несколько тысяч планет. Используя такой же метод, орбитальный телескоп "Кеплер" нашел 2,5 тыс. экзопланет, существование которых удалось подтвердить. Получение SpaceX разрешения на запуск подобных миссий - весьма значимое достижение для компании. Но одна из ее главных задач остается нерешенной - создание пилотируемого космического корабля. Над этим же работает и конкурент SpaceX - корпорация Boeing. Изначально SpaceX должна была представить готовую ракету для сертификации во втором квартале 2017 года, а Boeing - в третьем. Сейчас же эту дату обе компании перенесли на первый квартал 2019 года.
  14. Международная группа астрономов сообщает, что число обнаруженных экзопланет возросло почти на сотню, благодаря продолжающейся миссии K2 космического телескопа «Кеплер» аэрокосмического агентства NASA. Проанализировав последние данные, полученные с телескопа, ученые объявили об открытии еще 95 планет, что в целом повышает количество обнаруженных в рамках миссии K2 экзопланет почти до 300. «Мы начали анализ 275 кандидатов, 149 из которых впоследствии были подтверждены как экзопланеты. При этом 95 из них являются ранее неизвестными», — прокомментировал ведущий автор исследования Эндрю Майо из Датского технического университета. Напомним, что космическая миссия «Кеплер» была запущена в 2009 году. С тех пор телескоп кружит вокруг Солнца и пытается обнаружить новые экзопланеты с помощью транзитного метода наблюдения – время от времени фотографирует другие звезды и ищет изменения в их яркости. Если яркость снижается, а затем через какой-то промежуток времени обретает то же значение, то, вероятнее всего, это означает, что свет звезды периодично блокируется достаточно большим телом. Другими словами, возможно, планетой. Метод очень кропотливый и требует анализа огромного объема данных. Сначала необходимо выделить периоды изменения в яркости, а затем и подтвердить их. Кроме того, он работает только в том случае, если планета и звезда попадают в плоскость луча зрения наблюдателя (либо нас, либо же, как в данном случае, телескопа «Кеплер»). Тем не менее метод признается астрономами достаточно эффективным. Благодаря ему, отмечают в NASA, в рамках основной части миссии «Кеплер» обнаружил 5100 кандидатов и подтвердил существование 2341 экзопланеты. К сожалению, в 2013 году космический телескоп столкнулся с серьезной проблемой, когда один из его гироскопов, помогающих ориентироваться в пространстве, вышел из строя. Однако в NASA нашли способ, как продлить жизнь космическому наблюдателю. Для ориентации телескопа было решено использовать вспомогательные рулевые двигатели. Благодаря этому телескоп служит науке до сих пор. Данные, которые команда Майо использовала для анализа, были собраны телескопом еще в 2014 году. Ученым пришлось немало повозиться над тем, чтобы подтвердить, что отмеченные изменения яркости звезды не были вызваны другими возможными факторами. «Мы обнаружили, что источником некоторых сигналов являются сразу несколько звездных систем, а также электромагнитный шум самого космического аппарата. Но мы также обнаружили планеты, по размеру варьирующиеся от совсем маленьких землеподобных до размера с Юпитер и даже больше», — прокомментировал Майо. «Например, одна из планет, о которой ранее не было известно, находится у звезды HD 212657, расположенной примерно в 254 световых годах от нас. Она имеет 10-дневный орбитальный период вращения и находится у одной из самых ярких звезд, обнаруженных в рамках миссии «Кеплер» K2». Астрономы объясняют, что чем ярче звезда, тем больше мы можем узнать о планете, которая вокруг нее оборачивается. А в будущем, с запуском более мощных телескопов, сможем получать еще и более четкие изображения обнаруженных объектов. Вполне возможно, что благодаря новым технологиям ученые смогут получить даже информацию об атмосферах как уже обнаруженных экзопланет (например, системы TRAPPIST-1), так и тех объектов, которые еще только предстоит найти. Поиск экзопланет, конечно же, связан с желанием ученых найти внеземную жизнь. Но лишь отчасти. Здесь также важна и статистика, которая позволит хотя бы приблизительно понять, сколько вообще планет может иметься в космосе: сколько из них можно отнести к землеподобным, сколько – к газообразным. В конечном итоге это позволит узнать, насколько уникальна и уникальна ли вообще наша Солнечная система, а также то, каким образом она вписывается в общую картину Вселенной.
  15. Европейская Южная Обсерватория (ESO) сообщает о том, что с приёмником ESPRESSO на Очень Большом Телескопе (VLT) в Чили впервые выполнено объединение световых потоков от всех четырёх 8,2-метровых основных телескопов комплекса. Система VLT изначально задумывалась так, чтобы её можно было использовать в режиме единой гигантской обсерватории при совмещении четырёх «юнитов» — основных телескопов (Unit Telescopes). Когда световые потоки от четырёх 8,2-метровых модулей соединяются, по своей светособирающей площади VLT становится крупнейшим из существующих сейчас в мире оптических телескопов: он эквивалентен индивидуальному телескопу с апертурой 16 метров. В новом режиме VLT с приёмником ESPRESSO позволит решить ряд важных научных задач. Эшелле-спектрограф ESPRESSO (The Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations) предназначен для исследования землеподобных планет и поиска возможной переменности фундаментальных физических постоянных. Вторая из этих задач требует наблюдений далёких и слабых квазаров — чему как раз и будет в наибольшей степени способствовать новый режим работы VLT. Свет от каждого из основных телескопов VLT через систему зеркал, призм и объективов поступает в спектрограф ESPRESSO, расположенный на расстоянии до 69 метров от них. Сложная оптика позволяет ESPRESSO либо комбинировать потоки от любого сочетания четырёх «юнитов», увеличивая тем самым их светособирающую силу, либо по очереди работать с каждым из основных телескопов индивидуально, оптимально используя наблюдательное время. Все эти режимы работы специально предусмотрены в конструкции спектрографа ESPRESSO. В целом, как отмечается, сведение оптических пучков и использование комплекса VLT в режиме единого телескопа предоставит астрономам доступ к информации, которая раньше оставалась недоступной.
  16. Европейская Южная Обсерватория (ESO) сообщает о том, что совет директоров ALMA (ALMA Board) утвердил проект создания нового спектрометра для «Решётки Морита» (Morita Array), которая образует часть комплекса ALMA. ALMA — это Большая Атакамская Миллиметровая / субмиллиметровая решётка (The Atacama Large Millimeter/submillimeter Array). Комплекс представляет собой международный астрономический инструмент — совместный проект ESO, Национального научного фонда США NSF (U.S. National Science Foundation) и Национального института естественных наук Японии NINS (National Institutes of Natural Sciences) в кооперации с Республикой Чили. Решётка антенн ALMA достигает сверхвысокого разрешения путём интерферометрического объединения сигналов от многих антенн, в результате чего образуется гигантский виртуальный телескоп с эффективным диаметром до 16 километров. В свою очередь, «Решётка Морита» составляет компактную часть ALMA — её антенны находятся на небольшом расстоянии друг от друга. Радиосигналы, принимаемые этими антеннами, обрабатываются и складываются сверхмощным вычислительным устройством — коррелятором ACA Correlator. Коррелятор ACA — гигантская вычислительная машина для обработки данных, состоящая из 52 отдельных модулей, соединённых волоконно-оптическими каналами. Она проводит корреляцию сигналов от антенн и передаёт информацию в компьютеры ACA, которые выполняют окончательную обработку данных и строят изображения. Сейчас коррелятор ACA оптимизирован для обработки сигналов от двенадцати 7-метровых антенн, но эта оптимизация не учитывает четырёх 12-метровых антенн, работающих как единый телескоп. После запланированной модернизации коррелятор по-прежнему будет обрабатывать сигналы от 7-метровых антенн, в то время как сигналы от 12-метровых антенн будут обрабатываться новым спектрометром, что позволит максимизировать эффективность «Решётки Морита». Ожидается, что новый инструмент станет доступен учёным со всего мира в 2022 году.
  17. В 2014 году ученые-астрономы, использующие космический телескоп Hubble Space Telescope, обнаружили ненормально большое скопление галактик. Более поздние наблюдения за этим скоплением позволили вычислить его массу, которая составила три миллиона миллиардов масс Солнца. Это настолько огромная масса, что скопление получило название "El Gordo" ("Самый толстый" в переводе с испанского). Известное под официальным названием ACT-CLJ0102-4915, это скопление является самым большим, самым горячим и самым ярким скоплением рентгеновских галактик, среди обнаруженных за всю историю астрономии. Скопления галактик являются самыми большими космическими объектами во Вселенной, удерживаемыми собственными гравитационными силами. Большие скопления галактик формируются в течение миллиардов лет путем поглощения более мелких скоплений. Наблюдения от 2012 года, проведенные при помощи телескопа Very Large Telescope, рентгеновской обсерватории Chandra и телескопа Atacama Cosmology Telescope, показали, что скопление "El Gordo" фактически состоит из двух скоплений, сталкивающихся на скорости в миллионы километров в час. Формирование скоплений галактик зависит во многом от темной материи и темной энергии, и их изучение может пролить свет на эти загадочные и неуловимые явления. Наблюдения телескопа Hubble показали, что большая часть массы скопления "El Gordo" скрыта в форме массы темной материи. Имеющиеся данные указывают на то, что большая часть "нормальной" материи в этом скоплении приходится на облака горячего газа, который достаточно ярко светится в рентгеновском диапазоне, отрываясь от скоплений темной материи в результате столкновения. И здесь возникает весьма интересный эффект, в результате столкновения обычная материя замедляется, а темная продолжает движение с прежней скоростью. Представленный выше снимок скопления "El Gordo" был сделан камерами космического телескопа Hubble Advanced Camera for Surveys и Wide-Field Camera 3 в рамках обзора RELICS (Reionization Lensing Cluster Survey). В ходе этого обзора телескоп провел подробную съемку 41 массивного скопления галактик с целью обнаружения самых ярких и самых отдаленных галактики. И именно эти галактики станут одними из первоочередных целей для их изучения при помощи нового телескопа James Webb Space Telescope.
  18. Коричневые карлики представляют собой таинственные объекты, занимающие промежуточное положение между звездой и планетой. В изучении процессов формирования этих загадочных объектов астрономам понадобятся уникальные возможности нового космического телескопа НАСА под названием James Webb («Джеймс Уэбб»). Несколько исследовательских групп будут использовать космический телескоп James Webb для изучения природы коричневых карликов. Хотя теоретически существование коричневых карликов было предсказано еще в 1960-х гг., а подтверждено – в 1995 г., тем не менее, у астрономов сегодня еще не сложилось единого мнения о том, по какому механизму происходит формирование коричневых карликов: в результате сжатия газа, как в случае звезды, или же путем аккреции материала из протопланетного диска, как в случае формирования планеты. Этьен Артиго (Étienne Artigau) из Монреальского университета, Канада, возглавляет команду, которая будет использовать обсерваторию James Webb для изучения одного конкретного коричневого карлика под названием SIMP0136. Этот объект представляет собой молодой, изолированный коричневый карлик небольшой массы – один из ближайших к Солнцу объектов этого класса – что делает его перспективной целью для исследования, поскольку объект SIMP0136 демонстрирует ряд особенностей, присущих планете, и в то же время рядом с ним не находится родительская звезда, свет которой часто мешает наблюдениям экзопланет. Объект SIMP0136 ранее получил известность в связи с тем, что команда Артиго обнаружила признаки существования облаков в его атмосфере. Теперь Артиго и его коллеги планируют использовать спектроскопические инструменты телескопа James Webb для получения более подробной информации о химических элементах и их соединениях в составе вещества этих облаков.
  19. Европейская Южная Обсерватория (ESO) заключила контракт на изготовление лазеров для системы адаптивной оптики Чрезвычайно Большого Телескопа (ELT). Проект ELT предполагает создание самого большого (39-метрового) телескопа оптического и ближнего инфракрасного диапазонов в мире. Для этого комплекса разработана сложная пятизеркальная оптическая система, не имеющая аналогов и требующая создания оптических и механических элементов на пределе современных технических возможностей. ELT расположится на вершине горы Серро Армазонес неподалёку от обсерватории ESO Параналь в северном Чили. Высота башни составит почти 80 метров, а площадь под ней будет сравнима с площадью футбольного поля. Сообщается, что контракт на создание лазеров для системы адаптивной оптики подписан с немецкой компанией TOPTICA. В работах также примут участие специалисты канадской фирмы MPB Communications (MPBC). Проектом предусмотрено изготовление как минимум четырёх лазерных источников для ELT, которые помогут телескопу достичь пространственного разрешения, беспрецедентного для наземных телескопов оптического и инфракрасного диапазона. Адаптивная оптика компенсирует размывание изображений в земной атмосфере, позволяя астрономам получать гораздо более чёткие снимки. Лазеры при этом используются для создания нескольких искусственных звёзд в верхних слоях атмосферы Земли — светящихся точек в окрестности наблюдаемого объекта, которые позволяют измерить (и затем скомпенсировать) искажения волнового фронта, вызванные локальной турбулентностью земной атмосферы. Первые наблюдения на ELT намечены на 2024 год. В перспективе комплекс получит систему, способную создавать до восьми искусственных звёзд. Телескоп будет исследовать самые разнообразные объекты — от чёрных дыр до молодых галактик на границах Вселенной.
  20. НАСА приступает к проектированию новой крупной астрофизической миссии, космического телескопа, который позволит получать снимки Вселенной с самым широким полем обзора, когда-либо доступным в рамках возможностей одного инструмента, и с тем же уровнем глубины и четкости, который характерен для снимков, сделанных при помощи космического телескопа Hubble («Хаббл»). Космический телескоп Wide Field Infrared Survey Telescope (WFIRST), запуск которого ориентировочно намечен на середину 2020-х гг., станет научным преемником космического телескопа Hubble. 300-мегапиксельный инструмент Wide Field Instrument обсерватории WFIRST будет настолько же чувствительным, как камеры «Хаббла», однако при этом сможет вести наблюдения за участком неба, площадь которого в 100 раз больше. Это означает, что один снимок, сделанный при помощи телескопа WFIRST, будет содержать примерно такое же количество подробностей, какое содержат 100 снимков, сделанных при помощи «Хаббла». Такой широкий угол обзора нового космического телескопа поможет исследователям изучать такие крупномасштабные процессы, как ускоряющееся расширение Вселенной. Для объяснения этого феномена предлагаются две версии: действие так называемой «темной энергии» или нарушение Теории относительности Эйнштейна в космологическом масштабе. Кроме того, космический телескоп WFIRST поможет составить трехмерную карту расположения галактик во Вселенной, измеряя их красное смещение, а также при помощи феномена гравитационного линзирования сможет наблюдать распределение материи в галактиках и выявлять небольшие, каменистые планеты на орбитах вокруг звезд. Планируется, что в рамках обзора звезд, проведенного при помощи этой обсерватории, будет выявлено не менее 2500 новых внесолнечных планет. В целом, миссия WFIRST, оснащенная большим числом новых научных инструментов, может быть охарактеризована как универсальная миссия, позволяющая получить глубокую картину устройства Вселенной и помочь найти ответы на ряд важнейших вопросов, стоящих перед современной астрофизикой.
  21. Испытания в криогенной камере гигантского орбитального телескопа James Webb завершились в Космическом центре имени Джонсона в Хьюстоне (штат Техас). Как сообщил сегодня интернет-портал Space.com, охлаждение в камере до минус 233 градусов Цельсия обеспечивали два контура: внешний был заполнен жидким азотом, а внутренний - жидким гелием. Даже ураган "Харви", обрушившийся в августе нынешнего года на Техас, не прервал испытаний. Орбитальный телескоп находился в криогенной камере 90 суток, в это время проверялась не только устойчивость аппаратуры к сверхнизким температурам, но и возможности коррекции главного зеркала диаметром 6,5 м, составленного из 18 отдельных сегментов. "После 15 лет планирования испытаний, переоборудования криогенной камеры, сотни часов испытаний, призванных сократить возможность поломки аппаратуры, в результате усилий более 100 специалистов, работавших на протяжении 90 суток, испытания в криогенной камере успешно завершены", - отметил руководитель проекта создания орбитального телескопа Билл Охс. Теперь телескоп будет доставлен на испытательный стенд корпорации Northrop Grumman в Редондо-Бич (штат Калифорния), где к нему будет пристыкован двигательный отсек. После этого всю конструкцию подвергнут новой серии тестов на вибрацию и перегрузки. Вывод обсерватории на орбиту будет осуществлен в 2019 году ракетой-носителем Ariane 5 с космодрома Куру во Французской Гвиане, а затем телескоп после коррекции орбиты выйдет в точку Лагранжа L2 системы Солнце-Земля более чем в 1 млн километров от Земли. В течение шести месяцев вся бортовая аппаратура будет проверена, затем James Webb сможет начать регулярные наблюдения древнейших во Вселенной звезд и галактик, сформировавшихся вскоре после Большого взрыва. Срок его эксплуатации рассчитан на 10 лет.
  22. «Уникальное селфи» инженера-оптика компании Ball Aerospace Ларкином Кери (Larkin Carey) на самом деле представляет собой фото, сделанное для проверки выравнивания зеркал телескопа James Webb («Джеймс Уэбб») перед важными криогенными испытаниями оптических систем телескопа. В ходе этого важного тестирования инженеры проверили выравнивание всех элементов оптической системы телескопа и продемонстрировали, что индивидуальные сегменты первичного зеркала могут быть ориентированы под требуемыми углами друг относительно друга и относительно остальных элементов оптической системы телескопа. Эти испытания проводились в имитированных «космических» условиях, в которых предстоит работать телескопу для сбора информации о недоступных прежде для наблюдений уголков Вселенной. Проверка оптической системы в сборе является очень важным этапом проекта, позволяющим подтвердить способность телескопа корректно работать в космосе. Для проведения этого испытания был использован вспомогательный элемент оборудования под названием ASPA (AOS Source Plate Assembly). Это устройство было размещено в верхней части подсистемы Aft Optics Subsystem (AOS) телескопа, представляющей собой черный усеченный конус, выступающий из центра главного зеркала телескопа. На представленном фото Ларкин Кери, лежащий на специальной «серферской доске» возле вершины конуса AOS и надвисающий над основным зеркалом телескопа, расположенным горизонтально, направляет фотокамеру в сторону вторичного зеркала телескопа (закрепленного на трех длинных мачтах напротив основного зеркала), в котором отражаются, как видно на снимке, сам Кери, завершивший недавно монтаж оптоволоконных кабелей устройства ASPA, мультисегментное основное зеркало и подсистема AOS в его центре. После завершения криогенного тестирования в Космическом центре Джонсона оптические и научные инструменты телескопа «Джеймс Уэбб» отправятся в г. Редондо Бич, штат Калифорния, где специалисты компании Northrop Grumman Corporation произведут интеграцию этих элементов оборудования с солнечными экранами и несущей шиной космического телескопа.
  23. Монтаж пяти слоев солнечных экранов, необходимых для защиты оптики и инструментов космического телескопа НАСА James Webb («Джеймс Уэбб»), теперь полностью завершен. Корпорация Northrop Grumman Corporation со штаб-квартирой в штате Калифорния, США, занимавшаяся также конструированием оптики и шины космического телескопа для Центра космических полетов им. Годдарда НАСА, интегрировала пять слоев специального конструкционного материала в подсистему солнечных экранов телескопа. В настоящее время команда складывает и подгибает эти слои, готовясь к испытаниям по развертыванию солнечных экранов, которые запланированы на август.Все эти слои солнечных экранов будут работать в единой системе для снижения градиента температур между горячей и холодной сторонами обсерватории, примерно на 300 Кельвинов. Каждый последующий слой толщиной 50 микрон, выполненный из каптона (полиимидная диэлектрическая пленка, стабильная до температуры 0 К), будет холоднее предыдущего. Все слои были установлены и испытаны в июне и июле этого года в помещениях комплекса Space Park корпорации Northrop Grumman Corporation.Космический телескоп James Webb представляет собой космическую обсерваторию нового поколения и является преемником космического телескопа Hubble («Хаббл»). Самый мощный на сегодняшний день космический телескоп в мире, James Webb будет наблюдать далекие объекты Вселенной, получая изображения первых сформировавшихся в ней галактик и обнаруживая неизведанные планеты на орбитах вокруг далеких звезд. Космический телескоп James Webb является совместным проектом НАСА, Европейского космического агентства и Канадского космического агентства.
  24. На острове Гавайи уже располагалась астрономическая обсерватория Кека (W. M. Keck Observatory), когда американские ученые в 2000-х годах «загорелись» идеей строительства еще одного Тридцатиметрового телескопа - TMT (Thirty Meter Telescope). В этих целях было организовано международное сообщество, члены и участники которого готовы были проспонсировать строительство телескопа ТМТ бюджетом, превышающим миллиард долларов США. В 2009 году было объявлено, что ТМТ будет расположен на вершине горы Мауна-Кеа, а спустя два года местное Бюро природных и земельных ресурсов выдало официальное разрешение на строительство обсерватории. Еще в 2010 году, жители тех районов не выражали никаких недовольств насчет предстоящих планов международного сообщества. Однако, их мнение кардинально изменилось сразу с началом строительных работ в 2014 году. Тогда еще не успели было начаться и конструкторские работы, как стройплощадку оккупировали активисты и препятствовали процессу. С развитием этих событий, строительство телескопа ТМТ было решено перенести на весну 2015 года, но потом эти сроки сдвинулись и до лета, а в дальнейшем и вовсе массовые протесты активистов окончательно «заблокировали» начало строительства ТМТ. В конце 2015 года, по решению Верховного суда острова Гавайи международное сообщество и вовсе лишилось строительной лицензии, в связи с обнаружением определенных «нарушений» во время ее выдачи. Ученым было предложено во второй раз пройти проверку, окончание которой ожидалось в ноябре 2016 года. Из-за этого, представители консорциума даже задумались о переносе строительства Тридцатиметрового телескопа на Канарские острова. Остановил их только один значительный минус данного региона - наименее «удачное» и удобное месторасположение, к тому же климатические условия менее пригодные для наблюдений, что подрывает научную ценность данной постройки. Именно поэтому Эдом Стоуном (Ed Stone) - исполнительным директором международного сообщества совместно с его односторонниками велись переговоры с правительством Гавайских островов, чтобы добиться нового заседания суда. В итоге, астрономы-единомышленники добились своего, и сейчас лишь ожидают официального разрешения на строительство от Бюро земельных и природных ресурсов, после чего работы смогут быть продолжены. Они рассчитывают решить эти формальные вопросы в самые кратчайшие сроки. Однако, как практически сразу же стало известно, представители местных этнических и религиозных организаций, а так же активисты из местных жителей, снова попытаются возобновить судебные тяжбы и не дать ход строительству нового телескопа на священной горе Мауна-Кеа.
  25. Космический телескоп Kepler обнаружил 219 новых планет-кандидатов в экзопланеты, из них 10 размером схожи с Землей и могут обладать условиями, подходящими для жизни. Об этом говорится в пресс-релизе NASA, опубликованном в понедельник. "Команда космического телескопа Kepler опубликовала каталог, в котором представлены 219 новых объектов-кандидатов в экзопланеты, 10 из которые по размеру схожи с Землей и находятся в "зоне жизни", то есть на таком расстоянии от звезды, где вода может находиться в жидком виде на поверхности планеты", - говорится в сообщении. Всего в каталоге Kepler 4 тыс. 034 объектов. Для 2 тыс. 335 подтвержден статус планет, около 30 из них по размеру схожи с Землей и находятся в "зоне жизни". Космический телескоп Kepler был запущен в марте 2009 года и обращается вокруг Солнца с периодом в 372,5 дней. Задача телескопа - наблюдать за светом примерно 150 тыс. звезд, чтобы отследить тот момент, когда звезда "мигнет". Это означает, что между ней и телескопом прошло небесное тело, возможно, планета. NASA надеется, что Kepler сможет проработать на орбите еще как минимум пару лет, а затем "охоту за планетами" продолжит космический телескоп имени Джеймса Уэбба. Новый аппарат, названный в честь руководителя программы "Аполлон", которая позволила человеку побывать на Луне, должен отправиться на орбиту в 2018 году.
×
×
  • Создать...