душман Posted March 29, 2021 Posted March 29, 2021 Команда исследователей, возглавляемая специалистами из Массачусетского технологического института (MIT), изучила десять наборов данных, чаще всего используемых для тестирования систем машинного обучения. Ученые обнаружили, что около 3,4% данных были неточными или неправильно маркированными. Это могло вызвать проблемы в системах искусственного интеллекта, которые используют эти наборы данных. Наборы данных, на каждый из которых есть ссылки более чем в 100 000 работ, включают текстовые материалы, изображения и видео из групп новостей, магазина Amazon, сервиса YouTube и базы фильмов IMDb. Среди ошибок — отрицательные отзывы о товарах, ошибочно помеченные как положительные, неверное описание того, что изображено на иллюстрациях, неточное описание содержания звукозаписей. Показательно, что для обнаружения возможных ошибок исследователи тоже использовали методы машинного обучения и соответствующие программные инструменты. Остается добавить, что некоторые ошибки можно считать незначительными, а порой следует скорее говорить о неоднозначности входных данных. Тем не менее, в одном из наборов данных — тесте QuickDraw ошибки есть примерно в 10% набора. Чему может научиться ИИ на таких данных — остается только догадываться. IPTV сервис | Доступные цены кардшаринга | Доступные цены IPTV
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now