Перейти к содержанию
Авторизация  
Ippolitovich

Как сделать путешествие назад во времени физически возможным?


Рекомендуемые сообщения

2.jpeg

Мысль о том, что мы могли бы вернуться назад во времени, дабы изменить прошлое, стала одним из любимых приемов в фильмах, литературе и телесериалах. «Гарри Поттер», «Назад в будущее», «День Сурка» и многие другие фильмы обещали нам возможность сделать повторный выбор в своем прошлом. Для большинства людей такая возможность будет оставаться фантастической, потому что все законы физики указывают на то, что движение вперед во времени — это неизбежно и необходимо. В философии даже возник парадокс, подчеркивающий абсурдность такой возможности: если бы путешествия назад во времени были возможны, вы могли бы отправиться назад во времени и убить своего дедушку до того, как ваши родители вообще встретились, тем самым устранив возможность своего собственного существования. Долгое время считалось, что пути обратно нет. Но благодаря прелюбопытнейшим свойствам пространства и времени в общей теории относительности Эйнштейна, путешествие назад во времени может стать возможным, считает физик Итан Зигель.

 

81.jpg


Иллюстрация ранней Вселенной, состоящей из квантовой пены, в которой квантовые флуктуации проявляются на мельчайших масштабах. Положительные и отрицательные флуктуации энергии могут создавать крошечные квантовые червоточины

Начнем с физической идеи червоточины. В известной нам Вселенной в мельчайших масштабах на ткани пространства-времени проявляются крошечные квантовые флуктуации. Сюда входят энергетические флуктуации в положительных и отрицательных направлениях, зачастую происходящие очень близко друг к другу. Сильная, плотная, положительная флуктуация энергии может создавать определенным образом изогнутое пространство, а сильная, плотная, отрицательная флуктуация энергии будет искривлять пространство противоположным образом. Если соединить два этих региона кривизны, вы получите — ненадолго — квантовую червоточину. Если червоточины проживет достаточно долго, вы можете попробовать провести через нее частицу, так что она мгновенно исчезнет в одном месте пространства-времени и появится в другом.

 

82.jpg

 

Точный математический график лоренцевой червоточины. Если один конец червоточины построен из положительной массы/энергии, а другой из отрицательной массы/энергии, червоточина станет проходимой

Чтобы масштабировать все это, например, и позволить пройти через червоточину человеку, потребуется кое-что сделать. Хотя все известные частицы в нашей Вселенной обладают положительной энергией и либо положительной, либо нулевой массой, возможно существование частиц с отрицательной массой и энергией в рамках ОТО. Конечно, мы их пока не нашли, но если верить физикам-теоретикам, нет ничего, что исключало бы возможность их существования.

Если вещество с отрицательной массой и энергией существует, создание сверхмассивной черной дыры и ее аналога с отрицательной массой и энергией, а затем последующее их соединение позволит создать проходимую червоточину. Независимо от того, как далеко вы разводите два этих совмещенных объекта, если у них имеется достаточно массы и энергии — как положительных, так и отрицательных — мгновенная связь сохранится. Все это замечательно подходит для мгновенных путешествий через пространство. Но как насчет времени? И вот здесь-то в игру вступают законы специальной теории относительности.

 

83.gif

 

Согласно закону специальной теории относительности, стационарные и движущиеся части стареют с разной скоростью

Если вы путешествуете близко к скорости света, вы испытываете явление, известное как замедление времени. Ваше движение в пространстве и движение во времени связаны скоростью света: чем быстрее вы движетесь через пространство, тем медленнее — через время. Представьте, что у вас есть пункт назначения в 40 световых годах отсюда, а вы можете двигаться с невероятной скоростью: свыше 99,9% скорости света. Если вы сядете в корабль, отправитесь к звезде почти на скорости света, затем остановитесь, развернетесь и вернетесь на Землю, обнаружится нечто странное.

Из-за замедления времени и сокращения длины, вы можете добраться до места назначения всего за год, а затем вернуться еще через год. Но на Земле пройдет 82 года. Все, кого вы знали, сильно постареют. Именно так с точки зрения физики возможны путешествия во времени: вы отправляетесь в будущее, и путешествие во времени будет зависеть только от вашего движения в пространстве.

 

84_.jpg

 

Возможны ли путешествия во времени? Имея достаточно большую червоточину, например, созданную двумя сверхмассивными черными дырами (положительных и отрицательных масс и энергий), мы могли бы попытаться

Если же вы построите червоточину вроде той, что мы описали выше, история изменится. Представьте, что один конец червоточины будет недвижим, например, где-нибудь рядом с Землей, а другой будет путешествовать на скорости, близкой к световой. После года быстрого движения одного из концов червоточины, вы через нее проходите. Что происходит дальше?

Что ж, год будет для всех разным, особенно если все будут двигаться во времени и пространстве по-разному. Если мы говорим о тех же скоростях, что и раньше, «движущийся» конец червоточины постареет на 40 лет, но «спокойный» конец — всего на 1 год. Встаньте в релятивистский конец червоточины и попадете на Землю только через год после создания червоточины, а вы сами постареете на 40 лет.

Если 40 лет назад кто-то создал такую пару запутанных червоточин и отправил их в подобное путешествие, можно было бы шагнуть в одну из таких сегодня, в 2017 году, и отправиться в 1978 год. Единственная проблема заключается в том, что вы сами тоже не могли быть в этом месте в 1978 году; вам нужно было быть с одним из концов червоточины или же путешествовать через космос, чтобы догнать ее.

 

85_.jpg

 

Варп-путешествие в представлении NASA. Если создать червоточину между двумя точками пространства, чтобы одна нора двигалась релятивистски относительно другой, проходящие через нее наблюдатели старели бы по-разному

И кстати, такая форма путешествия во времени также запрещает парадокс дедушки! Даже если бы червоточина была создана до того, как были зачаты ваши родители, вы никаким образом не могли бы появиться на другом конце червоточины достаточно рано, чтобы вернуться обратно во времени и найти своего дедушку до этого важнейшего момента. В лучшем случае вы могли бы взять своих новорожденных отца и мать на корабль, догнать другой конец червоточины, дать им повзрослеть, постареть, зачать вас и затем отправиться самостоятельно по червоточине обратно. Тогда вы встретите дедушку в расцвете сил, но технически это будет происходить уже в то время, когда родились ваши родители.

Вселенная дает волю самым необычным вещам. Особенно если отрицательная масса и энергия действительно существует во Вселенной и их можно контролировать. Но путешествие обратно во времени — это что-то совершенно из ряда вон выходящее. Из-за странностей как специальной, так и общей теории относительности путешествие во времени в прошлое может быть возможным не только в фантастике.

Поделиться сообщением


Ссылка на сообщение

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Создать учетную запись

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Регистрация нового пользователя

Войти

Уже есть аккаунт? Войти в систему.

Войти
Авторизация  

  • Похожий контент

    • От Slvek-Nori
      как на vu+solo2 настроить ip-tv
    • От TecVentil
      Добрый день! Перестала работать кнопка паузы(запись) на ресивере TUXBOX. Возможно не взаимосвязанные вещи, но стал часто зависать и как следствие приходится перезагружать. Запись ведется на флешку. 
    • От Ippolitovich
      Метеориты, которые могут представлять угрозу для человека, падают на Землю относительно часто. За прошедшие 100 лет на территории России произошло как минимум два таких опасных события: падение Сихоте-Алиньского метеорита в 1947 году, обломки которого оставили в грунте воронки глубиной до 6 м, и взрыв Челябинского метеорита в 2013 году. Еще раньше, в 1908-м, гораздо более мощный взрыв произошел над Тунгусской тайгой и повалил деревья на площади 2 тыс. кв. км. Ряд исследователей относят этот инцидент также к падению небесного тела.
      Одним из наиболее интересных направлений космических исследований вопрос защиты от астероидов назвал 23 июля глава Роскосмоса Дмитрий Рогозин. Какие космические тела опасны и как можно от них защититься, рассказал ТАСС научный руководитель Института астрономии РАН, председатель экспертной группы по космическим угрозам Борис Шустов.
       


      По словам ученого, на сегодня человечество, в основном благодаря усилиям США, выявило практически все потенциально опасные небесные тела размером более 1 км. Обнаружением опасных астероидов и комет, их изучением, оценкой рисков занимается созданное при НАСА специальное подразделение — Planetary Defense Coordination Office. Падение астероида размером 1 км вызвало бы глобальную катастрофу, но "вероятность столкновения с подобным телом исчезающе мала, и такие потенциальные угрозы не представляют практического интереса", отметил Шустов.
       


      Реальную опасность для Земли и ее обитателей представляют тела небольшого по космическим меркам размера — 50 м и меньше. В этот диапазон попадут, например, тунгусское и челябинское тела. "По астрономическим понятиям челябинское тело совсем небольшое (около 17 м), но видите, сколько оно наделало шума и даже ущерб нанесло солидный", — сказал Шустов.
      Хотя эти относительно небольшие метеориты никак не могут вызвать глобальную катастрофу, их падения происходят гораздо чаще. Если гигантский астероид (километрового масштаба) может прилететь на Землю раз в 10 млн лет, то тела типа челябинского могут падать каждые 10–20 лет, пояснил ученый.
       
       

       
      Мы знаем, где находятся, можем проконтролировать, то есть спрогнозировать движение, оценить вероятность столкновения всего для 1% опасных астероидов размером 50 м. А о телах еще меньшего размера, как челябинское, мы не знаем практически ничего — они слишком малы, чтобы обнаружить их на большом расстоянии.
       
       


      Шустов отметил, что жителям Челябинска сильно повезло — метеорит вошел в атмосферу по пологой траектории и взорвался на большой высоте. "Взрыв произошел на высоте около 24 км, поэтому последствия не такие серьезные, как могли бы быть. Если бы тело входило по гораздо более крутой траектории и взрыв произошел гораздо ближе к поверхности Земли, то мало бы не показалось — разрушения и жертвы были бы страшные", — пояснил ученый.
      Челябинский метеорит упал на Землю 15 февраля 2013 года в 80 км от города Сатка Челябинской области. По данным МЧС, во многих домах Сатки, а также в зданиях Челябинска, фронтом стоящих к месту падения, были выбиты стекла. Из-за ударной волны от взрыва метеорита в городе частично обрушилась крыша цинкового завода. За помощью обратились более 500 человек, 34 человека, в том числе дети, были госпитализированы.
      Шустов подчеркнул, что "челябинское тело не было обнаружено никакими средствами вплоть до входа в атмосферу из-за своего малого размера". По оценкам РАН, метеорит вошел в атмосферу со скоростью 18 км/с, его масса составила порядка 10 тыс. т, а энергия взрыва — около 400 кт в тротиловом эквиваленте. Для сравнения: мощность атомной бомбы, уничтожившей Нагасаки, была в 20 раз меньше — 21 кт.
       


      Что делать
      По словам директора Института астрономии РАН, в России нужно создавать систему обнаружения метеоритов. Сейчас "мы в основном опираемся на те данные, которые дают нам американские системы или работающие в кооперации с НАСА", сказал Шустов. При этом на государственном уровне проблемой астероидно-кометной опасности кроме США уже занимаются в Европе и отчасти в Японии, Южной Корее и Китае. Так, десять лет назад при Европейском космическом агентстве было создано подразделение Space Situation Awareness System, одним из направлений работы которого является проблема обнаружения опасных космических тел.
      Система НАСА дает более 98% мировой информации об объектах, сближающихся с Землей. На долю же российских средств обнаружения приходится менее 0,1%.
      Для решения этой вполне практической проблемы нужна постоянная и плотная работа на уровне серьезной службы. Для этого наше государство должно определиться, будем ли мы действительно работать в этом направлении. И если да, то тогда нужна поддержка на системном уровне.
      Специалист добавил, что в России в рамках Роскосмоса работает эффективная система мониторинга космического мусора, но проблема астероидно-кометной опасности не входит в сферу ее ответственности.
       


      При этом, отметил ученый, в России есть заделы для решения проблемы астероидно-кометной опасности. Есть телескоп, построенный в 300 км от Иркутска на границе с Монголией в Институте солнечной и земной физики Сибирского отделения РАН. Прибор имеет диаметр 160 см, широкое поле зрение, но у РАН не хватило денег, чтобы оснастить его необходимым датчиком. "Если его оснастить, тогда у нас будет хотя бы один прибор не хуже американских", — отмечает Шустов.
      Телескоп под Иркутском понадобится для обнаружения тел на дальних подступах к Земле — за месяц и более до возможного сближения. Но необходимо также развивать систему обнаружения на ближних дистанциях. "Вторая часть — создание сети наземных телескопов, небольшого размера, диаметром около 50 см, но их должно быть много. Они нужны, чтобы очень оперативно обнаруживать на ближних подступах тела типа челябинского и успевать предупредить об опасности", — сообщил он.
      "Пока все, что делается у нас в России, — это работы, проводимые на инициативном уровне. То есть по мере скромных возможностей научных институтов — время от времени и главным образом в научных интересах", — отметил ученый. В частности, имеется сеть телескопов МГУ им. М.В. Ломоносова, сеть телескопов ИПМ им. М.В. Келдыша, но все эти средства не скоординированы на системном уровне.
       


      Другие способы
      По словам Шустова, серьезным вызовом в проблеме обнаружения опасных небесных тел являются так называемые дневные астероиды. Это небесные тела, летящие к Земле со стороны дневного неба. В этом случае наземные и даже околоземные оптические средства обнаружения не могут работать эффективно из-за сильной засветки. Радары, которым все равно, когда работать, днем или ночью, не подходят для обнаружения астероидов, так как видят на слишком короткой дистанции.
      Со стороны дневного неба, уточнил Шустов, прилетает половина таких тел, как челябинское. Заблаговременно обнаружить их можно только из космоса, причем с достаточного удаления от Земли. "Поэтому мы предложили разместить между Солнцем и Землей в так называемой точке L1 (на расстоянии 1,5 млн км от Земли) космический аппарат с небольшим телескопом размером всего 25 см, чтобы смотреть на окрестности Земли со стороны. Проект называется СОДА (Система обнаружения дневных астероидов)", — рассказал ученый.

      СОДА получила положительные оценки как российских, так и западных экспертов. Однако, отметил Шустов, и здесь "нужна поддержка, так как институт РАН не в состоянии реализовать даже самый маленький космический проект". Ученый надеется, что Роскосмос рассмотрит проект СОДА в 2019 году и примет определенное решение.
      Говоря о мерах противодействия метеоритам, Шустов рассказал, что с телами типа челябинского сегодня ничего нельзя (да и не нужно) сделать, кроме выполнения мер гражданской обороны.
      Мы рассчитываем систему обнаружения подобных тел таким образом, чтобы дать точную и исчерпывающую информацию потребителю — МЧС. Чтобы у министерства было время не менее чем четыре-десять часов для предупреждения население или даже эвакуации жителей. Также, возможно, в области потенциального поражения нужно будет приостановить какое-то опасное производство
      Для более крупных тел при достаточном времени упреждения рассматриваются различные способы противодействия — заблаговременное изменение орбиты или разрушения таких тел, добавил специалист.
      "Ученые ждут, что государство поддержит эти работы на системном уровне, и готовы помочь в работе по созданию национальной системы противодействия космическим угрозам", — подытожил Шустов.
    • От Ippolitovich
      Браузер Chrome от Google, а именно 68-я версия, теперь помечает все сайты без шифрования как небезопасные. Изменение касается всех ресурсов с HTTP-шифрованием, при входе на которые в адресной строке теперь будет отображаться соответствующий значок. Если сайт защищён протоколом HTTPS, то на нём такого значка вы не увидите.
       


      Нововведение, которое Google анонсировала ещё в феврале, — очередная попытка компании достичь как можно более высокой безопасности нахождения в Сети. На страницах ввода данных учётной записи аналогичные предупреждения о небезопасности отображаются с 2016 года, при этом всё более явными становились предупреждения об истёкших сертификатах. В 2014 году калифорнийский гигант начал продвигать HTTPS-сайты в поисковой выдаче, что стало существенным толчком для веб-мастеров.
      Google назвала нововведение «вехой развития безопасности Chrome». Стоит отметить, что компания вложила большие средства в исследования, связанные со стандартами шифрования данных в Интернете.
       


      HTTPS представляет собой форму шифрования, при котором соединение между пользователем и сайтом оказывается под защитой. Ресурсы и рекламные сети без шифрования уязвимы ко внедрению вредоносного программного обеспечения, чем часто пользуются киберпреступники.
      HTTPS-сертификаты и протоколы широкодоступны, причём зачастую совершенно бесплатно. Поэтому сайтов с шифрованием становится всё больше. Согласно статистике Google, 84 % страниц, загружаемых американскими пользователями Chrome, имеют HTTPS-защиту. В июле 2015 года их было всего 47 %.
    • От Ippolitovich
      На Луне 4 млрд лет назад могла существовать жизнь. К такому выводу пришли астробиологи из Лондонского университета и Университета штата Вашингтон (США), сообщает во вторник газета Daily Telegraph. Во всяком случае дважды в истории на естественном спутнике Земли, по данным ученых Иэна Кроуфорда и Дирка Шульце-Макух, возникали условия, позволяющие поддерживать существование простых форм организмов.
       

       
      Во время обоих периодов, связанных в том числе с вулканическими процессами, на Луне выбрасывалось из недр большое количество перегретых газов, включая водяной пар. Это не только привело к возникновению атмосферы, но и водоемов, ставших питательной средой для микроорганизмов. "Очень похоже на то, что Луна была в то время пригодна для жизни, - полагает Шульце-Макух из Университета штата Вашингтон. - Живые микроорганизмы вполне могли обитать в водоемах, пока поверхность спутника не стала сухой и мертвой".
      Эти выводы основываются на данных последних космических миссий и анализе образцов лунных пород и почвы, которые свидетельствуют, что Луна не такая уж сухая, как считалось ранее, отмечает издание.
      В 2009-2010 годах международная группа ученых обнаружила на спутнике Земли обширные запасы замороженной воды. Кроме того, существуют доказательства того, что большое количество воды присутствует в лунной мантии, указывает Daily Telegraph. По словам Кроуфорда, жизнь на Луну могла быть занесена извне, метеоритами. "Мы знаем, что на Земле есть лунные метеориты, так что вполне возможно, что жизнь могла быть занесена и с Земли", - сказал он.
      "Если мы сумеем найти свидетельства ранней жизни (на Луне), то это может прояснить для нас вопрос о том, как зарождалась жизнь на нашей планете", - добавил британский ученый.
×