Перейти к содержанию

Поиск

Показаны результаты для тегов 'экзопланет'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Новости
    • Новости сервера
    • Новости спутниковых провайдеров
    • Новости цифровой техники
    • Новости спутников и космических технологий
    • Новости телеканалов
    • Новости операторов связи, кабельного и IPTV
    • Новости сети интернет и софта (software)
    • Архив новостей
  • IPTV
    • Обсуждение IPTV каналов
    • IPTV на iptv-приставках
    • IPTV на компьютере
    • IPTV на телевизорах Smart TV
    • IPTV на спутниковых ресиверах
    • IPTV на мобильных устройствах
    • Kodi (XBMC Media Center)
    • FAQ по IPTV
  • IPTV in English
    • FAQ (Manuals)
    • Price
    • Discussions
  • Cпутниковое ТВ
    • Основной раздел форума
    • Кардшаринг
    • Транспондерные новости, настройка антенн и приём
    • Dreambox/Tuxbox/IPBox/Sezam и др. на базе Linux
    • Ресиверы Android
    • Другие ресиверы
    • Galaxy Innovations (без OS Linux)
    • Обсуждение HD\UHD телевизоров и проекторов
    • DVB карты (SkyStar, TwinHan, Acorp, Prof и др.)
    • OpenBOX F-300, F-500, X540, X560, X590, X-800, X-810, X-820, S1
    • Openbox X-730, 750, 770CIPVR, 790CIPVR
    • OpenBOX 1700(100), 210(8100),6xx, PowerSky 8210
    • Golden Interstar
    • Globo
    • Спутниковый интернет/спутниковая рыбалка
  • Общий
    • Курилка
    • Барахолка

Категории

  • Dreambox/Tuxbox
    • Эмуляторы
    • Конфиги для эмуляторов
    • JTAG
    • Picons
    • DM500
    • DM600
    • DM7000
    • DM7020
    • Программы для работы с Dreambox
    • DM7025
    • DM500 HD
    • DM800 HD
    • DM800 HDSE
    • DM8000 HD
    • DM 7020 HD
    • DM800 HD SE v2
    • DM 7020 HD v2
    • DM 500 HD v2
    • DM 820 HD
    • DM 7080
    • DM 520/525HD
    • Dreambox DM 900 Ultra HD
    • Dreambox DM920 Ultra HD
  • Openbox HD / Skyway HD
    • Программы для Openbox S5/7/8 HD/Skyway HD
    • Addons (EMU)
    • Ключи
    • Skyway Light 2
    • Skyway Light 3
    • Skyway Classic 4
    • Skyway Nano 3
    • Openbox S7 HD PVR
    • Openbox S6 PRO+ HD
    • Openbox SX4C Base HD
    • Skyway Droid
    • Skyway Diamond
    • Skyway Platinum
    • Skyway Nano
    • Skyway Light
    • Skyway Classic
    • Openbox S6 HD PVR
    • Openbox S9 HD PVR
    • Skyway Classic 2
    • Openbox S4 PRO+ HDPVR
    • Openbox S8 HD PVR
    • Skyway Nano 2
    • Openbox SX6
    • Openbox S6 PRO HDPVR
    • Openbox S2 HD Mini
    • Openbox S6+ HD
    • Openbox S4 HD PVR
    • Skyway Classic 3
    • Openbox SX4 Base
    • Openbox S3 HD mini
    • Openbox SX4 Base+
    • Openbox SX9 Combo
    • Openbox AS1
    • Openbox AS2
    • Openbox SX4
    • Openbox SX9
    • Openbox S5 HD PVR
    • Formuler F3
    • Openbox Formuler F4
    • Openbox Prismcube Ruby
    • Skyway Droid 2
    • Openbox S2 HD
    • Openbox S3 HD Micro
    • Skyway Air
    • Skyway Virgo
    • Skyway Andromeda
    • Openbox S1 PVR
    • Formuler4Turbo
    • Open SX1 HD
    • Open SX2 HD
    • Openbox S3 HD mini II
    • Openbox SX2 Combo
    • Openbox S3HD CI II
  • Openbox AS4K/ AS4K CI
  • Opticum/Mut@nt 4K HD51
  • Mut@nt 4K HD60
  • Octagon SF4008 4K
  • OCTAGON SF8008 MINI 4K
  • Octagon SF8008 4K
  • GI ET11000 4K
  • Formuler 4K S Mini/Turbo
  • VU+ 4K
    • Прошивки VU+ Solo 4K
    • Прошивки VU+ Duo 4K
    • Прошивки VU+ UNO 4K
    • Прошивки VU+ Uno 4K SE
    • Прошивки VU+ Ultimo 4K
    • Прошивки VU+ Zero 4K
    • Эмуляторы VU+ 4K
    • Vu+ Duo 4K SE
  • Galaxy Innovations
    • GI 1115/1116
    • GI HD Slim Combo
    • GI HD Slim
    • GI HD Slim Plus
    • GI Phoenix
    • GI S9196Lite
    • GI S9196M HD
    • GI Spark 2
    • GI Spark 2 Combo
    • GI Spark 3 Combo
    • Программы для работы с Galaxy Innovations
    • Эмуляторы для Galaxy Innovations
    • GI S1013
    • GI S2020
    • GI S2028/S2026/2126/2464
    • GI S2030
    • GI S2050
    • GI S3489
    • GI ST9196/ST9195
    • GI S2121/1125/1126
    • GI S6199/S6699/ST7199/ST7699
    • GI S8290
    • GI S8680
    • GI S8120
    • GI S2138 HD
    • GI S2628
    • GI S6126
    • GI S1025
    • GI S8895 Vu+ UNO
    • GI Vu+ Ultimo
    • GI S2238
    • GI Matrix 2
    • GI HD Mini
    • GI S2038
    • GI HD Micro
    • GI HD Matrix Lite
    • GI S1027
    • GI S1015/S1016
    • GI S9895 HD Vu+ Duo
    • GI S8180 HD Vu+ Solo
    • Vu+ SOLO 2
    • Vu+ Solo SE
    • Vu+ Duo 2
    • Vu+ Zero
    • GI ET7000 Mini
    • GI Sunbird
    • GI 2236 Plus
    • GI HD Micro Plus
    • GI HD Mini Plus
    • GI Fly
    • GI HD Slim 2
    • GI HD Slim 2+
    • GI HD Slim 3
    • GI HD Slim 3+
  • IPBox HD / Sezam HD / Cuberevo HD
    • Программы для работы с IPBox/Sezam
    • IPBox 9000HD / Sezam 9100HD / Cuberevo
    • IPBox 900HD / Cuberevo Mini
    • IPBox 910HD / Sezam 902HD / Sezam 901HD
    • IPBox 91HD / Sezam 900HD / Cuberevo 250HD
    • Addons
  • HD Box
    • HD BOX 3500 BASE
    • HD BOX 3500 CI+
    • HD BOX 4500 CI+
    • HD BOX 7500 CI+
    • HD BOX 9500 CI+
    • HD BOX SUPREMO
    • HD BOX SUPREMO 2
    • HD BOX TIVIAR ALPHA Plus
    • HD BOX TIVIAR MINI HD
    • HD BOX HB 2017
    • HD BOX HB 2018
    • HD BOX HB S100
    • HD BOX HB S200
    • HD BOX HB S400
  • Star Track
    • StarTrack SRT 100 HD Plus
    • StarTrack SRT 300 HD Plus
    • StarTrack SRT 2014 HD DELUXE CI+
    • StarTrack SRT 3030 HD Monster
    • StarTrack SRT 400 HD Plus
    • StarTrack SRT 200 HD Plus
  • Samsung SmartTV SamyGo
  • DVB карты
    • DVBDream
    • ProgDVB
    • AltDVB
    • MyTheatre
    • Плагины
    • DVBViewer
    • Кодеки
    • Драйвера
  • Openbox F-300, X-8XX, F-500, X-5XX
    • Программы для работы с Openbox
    • Ключи для Openbox
    • Готовые списки каналов
    • Все для LancomBox
    • Openbox F-300
    • Openbox X-800
    • Openbox X-810
    • Openbox X-820
    • Openbox F-500
    • Openbox X-540
    • Openbox X-560
    • Openbox X-590
  • Openbox X-730PVR, X-750PVR, X-770CIPVR, X-790CIPVR
    • Программы для работы с Openbox
    • Ключи
    • Openbox X-730PVR
    • Openbox X-750PVR
    • Openbox X-770CIPVR
    • Openbox X-790CIPVR
  • OpenBOX 1700[100], 210[8100], 6xx, PowerSky 8210
    • Программы для работы с Openbox/Orion/Ferguson
    • BOOT
    • Ключи
    • OpenBOX 1700[100]
    • OpenBOX 210[8100]
    • OpenBOX X600 CN
    • OpenBOX X610/620 CNCI
    • PowerSky 8210
  • Globo
    • Globo HD XTS703p
    • Программы для работы с Globo
    • Ключи для Globo
    • Globo 3xx, 6xxx
    • Globo 4xxx
    • Globo 7010,7100 A /plus
    • Globo 7010CI
    • Globo 7010CR
    • Ferguson Ariva 100 & 200 HD
    • Opticum 8000
    • Opticum 9000 HD
    • Opticum 9500 HD
    • Globo HD S1
    • Opticum X10P/X11p
    • Opticum HD 9600
    • Globo HD X403P
    • Opticum HD X405p/406
    • Opticum X80, X80RF
  • Golden Interstar
    • Программы для работы с Interstar
    • Все для кардшаринга на Interstar
    • BOOT
    • Ключи
    • Golden Interstar DSR8001PR-S
    • Golden Interstar DSR8005CIPR-S
    • Golden Interstar DSR7700PR
    • Golden Interstar DSR7800SRCIPR
    • Golden Interstar TS8200CRCIPR
    • Golden Interstar TS8300CIPR-S
    • Golden Interstar TS8700CRCIPR
    • Golden Interstar S100/S801
    • Golden Interstar S805CI
    • Golden Interstar S770CR
    • Golden Interstar S780CRCI
    • Golden Interstar TS830CI
    • Golden Interstar TS870CI
    • Golden Interstar TS84CI_PVR
    • Golden Interstar S890CRCI_HD
    • Golden Interstar S980 CRCI HD
    • Golden Interstar GI-S900CI HD
    • Golden Interstar S905 HD
    • Box 500
  • SkyGate
    • Программы для работы с ресиверами SkyGate
    • Списки каналов и ключей
    • SkyGate@net
    • SkyGate HD
    • SkyGate HD Plus
    • SkyGate Gloss
    • Sky Gate HD Shift
  • Samsung 9500
    • Программы для работы с Samsung 9500
    • Программное обеспечение для Samsung 9500
  • Openbox 7200
    • Прошивки
    • Эмуляторы
    • Программы для работы с Openbox 7200
    • Списки каналов
  • Season Interface
  • Прошивки для приставок MAG

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


Найдено: 13 результатов

  1. Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) продолжает рассказывать о задачах, которые предстоит решать телескопу «Джеймс Уэбб» (James Webb Space Telescope). Названный аппарат станет самой большой космической обсерваторией в истории — размер зеркала равен 6,5 метра. Запуск телескопа многократно переносился: сейчас вывести его в космос планируется в марте 2021 года. Не так давно сообщалось, что «Джеймс Уэбб» в числе прочего займётся исследованием Большого красного пятна на Юпитере. Теперь в NASA рассказали, что аппарату предстоит изучить атмосферы экзопланет. Целями телескопа «Джеймс Уэбб» станут некоторые газовые гиганты за пределами Солнечной системы, которые предстоит обнаружить аппарату TESS. Эта космическая обсерватория была запущена весной нынешнего года. Для обнаружения экзопланет будет применяться метод транзита. Миссия TESS рассчитана как минимум на два года: в течение этого времени аппарат, как ожидается, изучит окружение примерно 200 тыс. звёзд. В перспективе учёные намерены задействовать телескоп «Джеймс Уэбб» для исследования планет, на которых теоретически может существовать жизнь. Специалисты будут изучать окрестности красных карликов — это самые распространённые объекты звёздного типа во Вселенной. Из-за низкой скорости сгорания водорода они имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет. А поэтому существует определённая вероятность наличия жизни в планетных системах таких звёзд.
  2. Исследователи полагают, что на ближайшей к Земле экзопланете с умеренным климатом вполне могут существовать условия для зарождения и поддержания жизни. Речь идёт об объекте Ross 128 b, который был открыт осенью прошлого года. Эта экзопланета расположена на расстоянии приблизительно 11 световых лет от Земли. Она обращается вокруг неактивной красной карликовой звезды Ross 128. Предварительные наблюдения показали, что Ross 128 b находится в 20 раз ближе к своей материнской звезде, чем Земля к Солнцу. При этом планета получает только в 1,38 раза больше энергии от своего светила, чем Земля получает от Солнца. Новые данные говорят о том, что средняя температура вблизи поверхности Ross 128 b может составлять около 21 градуса Цельсия. А это означает, что на планете может существовать вода в жидком виде. Более того, специалисты склоняются к мнению, что Ross 128 b — это скалистый мир. По массе эта экзопланета примерно в 1,35 раза превосходит Землю. В целом, имеющаяся информация указывает на то, что Ross 128 b теоретически подходит для развития жизни. «Температурные условия на этой землеподобной планете должны быть умеренными и температура её поверхности, возможно, близка к температуре поверхности Земли. Ross 128 на сегодняшний день является самой "спокойной" из соседних звёзд, имеющей экзопланету со столь умеренным климатом», — отмечает Европейская Южная Обсерватория (ESO).
  3. Прошло уже тридцать лет с того момента, как было получено первое научное доказательство существования планет за пределами Солнечной системы. К моменту этой публикации официальный статус экзопланет получили 3767 объектов при общем числе кандидатов более 4500. Большинство из этих планет представляют собой очень суровые и совершенно точно непригодные для жизни миры, однако некоторые из них, по мнению ученых, все же могут обладать подходящими условиями для ее возникновения. По крайней мере они не слишком горячие и в то же время не слишком холодные для того, чтобы поддерживать наличие воды на их поверхности в жидкой форме. А вода, как известно, является одним из источников жизни. Разумеется, основная причина поиска новых экзопланет заключается в поиске жизни за пределами Земли. Зачем же еще тратить огромные деньги на строительство новых телескопов и создание новых технологий для изучения космоса? Поэтому ученые из Колумбийского университета (США) разработали новую систему, которая может упростить «охоту» за потенциально обитаемыми мирами. Используя алгоритмы машинного обучения, исследователи создали технологию, позволяющую более эффективно определять возможность выживания той или иной экзопланеты в условиях стабильной орбиты. В этой работе исследователи сконцентрировали свое внимание на так называемых «Татуинах», или экзопланетах, вращающихся вокруг двойных звезд, прямо как родной пустынный мир Люка Скайуокера из «Звездных войн». Формально известные в научных кругах как циркумбинарные планеты, они могут подвергаться колоссальным орбитальным изменениям, поскольку всегда находятся в гравитационном пуле сразу двух звезд. Притягиваясь то к одной звезде, то к другой, они рискуют со временем быть выброшенными из системы, а в худшем случае – упасть на одно из своих светил. Ученые вывели уравнение, помогающее определить долговременность стабильности орбиты циркумбинарных планет, однако, по мнению Криса Лама, главы разработки, о которой сегодня идет речь, это уравнение не может дать точных данных с учетом всех возможных обстоятельств. «Проблема в том, что при наличии в системе трех или более тел движение становится «хаотичным», как говорят физики и математики», — комментирует Лам. «Поэтому существуют пограничные случаи, когда уравнение предсказывает то, что система является нестабильной, когда она на самом деле стабильна, и наоборот. Мы посчитали, что справиться с этой проблемой нам поможет нейросеть». Способность предсказания того, будет ли планета выброшена за пределы своей системы – не просто прихоть, это дополнительная возможность для определения потенциала обитаемости того или иного мира. В конце концов для появления и развития жизни, по крайней мере той, которая имеется на Земле, потребовалось несколько миллиардов лет. Другими словами, для нее не будет никаких шансов, если речь идет о планете, блуждающей в космосе и не привязанной к своему светилу. Для более эффективного метода определения выживаемости «Татуинов» Лам и его коллеги создали алгоритм машинного обучения, который ученые натренировали с помощью 10 миллионов смоделированных подобных планет. Как отмечает Лам, спустя несколько часов экспериментов и настройки система смогла превзойти точность традиционного уравнения «по всем параметрам». Ученые ожидают, что новый космический телескоп TESS аэрокосмического агентства NASA, недавно успешно выведенный на орбиту, сможет обнаружить множество новых циркумбинарных планет, и разработка исследователей из Колумбийского университета, считает Лам, сможет помочь в исследовании этих миров. «Наша модель поможет астрономам понять, какие регионы лучше всего подходят для поиска планет вокруг двойных систем. Это, надеюсь, поможет нам не только открыть новые экзопланеты, но и лучше понять их особенности», — отметил ученый.
  4. Национальное управление США по воздухоплаванию и исследованию космического пространства (NASA) отрапортовало об успешном запуске аппарата TESS — так называемого «охотника за экзопланетами». Миссия TESS, или Transiting Exoplanet Survey Satellite, рассчитана как минимум на два года. В течение этого времени космический телескоп, как ожидается, изучит окружение примерно 200 тыс. звёзд. Аппарату предстоит искать планеты вне Солнечной системы.Для этого будут регистрироваться периодические изменения яркости звёзд, вызываемые транзитами — прохождениями планет перед диском своих светил. Новая космическая обсерватория была запущена при помощи ракеты SpaceX Falcon 9 со стартового комплекса Space Launch Complex 40 на северной оконечности мыса Канаверал в штате Флорида (США). Первую ступень Falcon 9 затем удалось успешно вернуть на Землю, посадив её на плавучую платформу. Аппарат TESS уже развернул солнечные батареи. В течение нескольких ближайших недель телескоп будет выполнять операции по выходу на рабочую орбиту, для чего запланированы шесть включений двигателей. Аппарат наделён четырьмя телескопами с ПЗС-камерами с разрешением 16,8 млн пикселей каждая. Ожидается, что обсерватория позволит обнаружить тысячи новых экзопланет.
  5. Где-то в безбрежном космическом пространстве, возможно, существует еще одна обитаемая планета. И она может быть расположена совсем недалеко – по астрономическим меркам – от нашей Солнечной системы. Большой проблемой при попытках наблюдения экзопланет является свет, излучаемый их родительскими звездами. Однако команда астрономов и физиков под руководством Бенджамина Мазина (Benjamin Mazin) из Калифорнийского университета в Санта-Барбаре, США, сегодня предлагает для решения этой проблемы разработанный ею ультрасовременный инструмент, который позволит обнаруживать планеты на орбитах вокруг ближайших звезд. Этот инструмент является крупнейшей в мире и наиболее современной камерой для наблюдения внесолнечных планет, построенной на сверхпроводниках. Эта камера носит название DARKNESS (the DARK-speckle Near-infrared Energy-resolved Superconducting Spectrophotometer) и представляет собой первый 10 000-пиксельный спектрограф интегрального поля, сконструированный, чтобы преодолеть ограничения, неизбежные для традиционных полупроводниковых детекторов. В этой камере используются Микроволновые кинетические индукционные детекторы (Microwave Kinetic Inductance Detectors), использование которых в составе оборудования крупного телескопа, оснащенного адаптивной оптикой, позволит напрямую наблюдать планеты, расположенные вокруг близлежащих звезд. Камера DARKNESS, создание которой финансируется Национальным научным фондом США, является попыткой преодолеть технические барьеры, связанные с обнаружением планет. Камера способна производить съемку со скоростью несколько тысяч кадров в секунду при минимальных уровнях шума или темнового тока – которые являются основными источниками ошибок в случае других инструментов. Кроме того, камера способна определять длину волны и время прибытия каждого отдельного фотона. Эта информация нужна для того, чтобы отличить планету от пятен отраженного или преломленного света, называемых спеклами. Эти особенности конструкции позволят камере различить планету, яркость которой ниже яркости родительской звезды в 100 миллионов раз. Эта камера была построена для 5-метрового телескопа Hale (Гейла), установленного в Паломарской обсерватории, США. На протяжении последних 1,5 лет команда Мазина четырежды запускала камеру для отработки режимов и отладки программного обеспечения. В мае исследователи вновь запустят этот инструмент, чтобы собрать данные об определенных планетах и продемонстрировать, насколько удалось улучшить контраст между планетой и родительской звездой за последнее время. Работа команды опубликована в журнале Publications of the Astronomical Society of the Pacific.
  6. С целью решения задачи идентификации далеких планет, пригодных для жизни, НАСА создало краудсорсинг-проект, в рамках которого добровольцы анализируют телескопические снимки в поисках остаточных дисков вокруг звезд, являющихся хорошими признаками наличия экзопланет. Используя результаты, полученные при реализации этого проекта, исследователи из Массачусетского технологического института, США, во главе с Виктором Панкратиусом (Victor Pankratius) сегодня «натренировали» систему машинного обучения на поиск самих остаточных дисков вокруг звезд. Масштаб этих поисков требует автоматизации: в данных, собранных при помощи одного только аппарата НАСА Wide-Field Infrared Survey Explorer (WISE), содержится более 750 миллионов возможных источников. В ходе проведенных тестов эта система машинного обучения демонстрировала совпадения с результатами идентификации остаточных дисков людьми в 97 процентах случаев. Исследователи также добавили к своему алгоритму функцию ранжирования остаточных дисков в соответствии с вероятностью расположения в них экзопланет. В своей новой работе ученые сообщают, что их система идентифицировала 367 прежде неизвестных источников, которые могут представлять интерес для дальнейшего изучения в рамках поисков экзопланет, пригодных для жизни. Основной «изюминкой» этого нового алгоритма является использование в нем большого числа базовых физических закономерностей, в то время как многие другие аналогичные системы имеют дело в основном с математикой. Например, новая система оценивает изменения интенсивности светового потока, испускаемого источником в четырех различных диапазонах. Кроме того, фильтром для отбора являются положение, симметрия и масштаб изучаемых источников, пояснили исследователи. Работа опубликована в журнале Astronomy and Computing.
  7. Миссия НАСА Transiting Exoplanet Survey Satellite (TESS) в настоящее время находится на заключительных этапах подготовки к запуску, который состоится 16 апреля. После запуска аппарат будет открывать новые планеты на орбитах вокруг близлежащих звезд, которые могут стать целями будущих исследований, призванных оценить возможность существования на этих планетах жизни. 15 марта состоялась проверка систем аппарата, которая подтвердила, что спутник готов к запуску. В рамках финальных подготовительных мероприятий космический аппарат будет заправлен топливом и размещен внутри обтекателя отсека полезной нагрузки ракеты Falcon 9 компании SpaceX. Спутник TESS будет запущен с площадки Комплекса 40 Базы ВВС США, расположенной на мысе Канаверал, штат Флорида, США. Разогнавшись дополнительно за счет гравитационного маневра вокруг Луны, космический аппарат войдет на околоземную орбиту с периодом 13,7 суток. Через 60 суток после запуска и завершения проверки инструментов спутник приступит к выполнению своей основной миссии запланированной продолжительностью 2 года. Четыре широкоугольных камеры позволят спутнику наблюдать 85 процентов всего неба. В то время как самый знаменитый «охотник за планетами» НАСА космический телескоп Kepler («Кеплер») наблюдал в основном планеты, совершающие транзит перед звездами, лежащими на расстояниях от 300 до 3000 световых лет от нас, космический аппарат TESS будет наблюдать транзитные планеты, движущиеся по орбитам вокруг близлежащих ярких звезд, то есть ярких звезд, расположенных на расстояниях менее 300 световых лет от Земли. Яркость и близость родительских звезд позволять использовать для наблюдений планет спектроскопию, которая, в свою очередь, даст возможность изучать состав атмосфер планет и делать вывод о пригодности их к существованию жизненных форм.
  8. Космическая миссия ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) была выбрана Европейским космическим агентством (ЕКА) для дальнейшей реализации. Целью этой миссии является наблюдение и изучение планет, лежащих за пределами нашей Солнечной системы – экзопланет. К настоящему времени открыты тысячи экзопланет, различающихся по массе, размерам и параметрам орбит, но ученым известно совсем немного об их химическом составе, формировании и зависимости хода их эволюции от типа родительской звезды. Миссия ARIEL проведет первый в мире широкомасштабный обзор экзопланет специально для изучения их атмосфер. Миссия будет направлена на изучение горячих планет размером с Юпитер, расположенных близко к родительским звездам, и поэтому поможет ученым понять ключевые процессы формирования и эволюции планетных систем. Комитет научных программ ЕКА выбрал миссию ARIEL в качестве четвертой по счету научной миссии среднего класса (M4) программы Cosmic Vision Programme. Руководитель проекта ARIEL профессор Джованна Тинетти (Giovanna Tinetti) из Университетского колледжа Лондона, Соединенное Королевство, рассказала: «Хотя на сегодняшний день мы открыли уже примерно 3800 планет, обращающихся вокруг других звезд, однако природа этих экзопланет остается по большей части невыясненной. Миссия ARIEL будет изучать достаточно обширный для формирования статистики набор экзопланет, что позволит получить действительно представительную картину природы экзопланет. Это позволит нам ответить на вопросы о зависимости химического состава планеты от условий, в которых протекало ее формирование, а также о том, каким образом родительская звезда влияет на формирование и эволюцию планеты».
  9. Европейское космическое агентство (ЕКА) одобрило миссию ARIEL по исследованию планет за пределами Солнечной системы. Отмечается, что в течение последнего времени были идентифицированы тысячи экзопланет разной массы и размера. Однако пока практически нет данных, связывающих характеристики таких объектов с природой их материнских звёзд. Проект ARIEL, или Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey, как раз и призван пролить свет на формирование и эволюцию планетных систем. Для этого в космос будет выведен специализированный аппарат, которому предстоит исследовать атмосферы экзопланет, вращающихся вокруг звёзд разного типа. На борту ARIEL расположится телескоп, функционирующий в видимом и инфракрасном диапазонах. Аппарат займётся изучением атмосфер сотен горячих планет — суперземель и газовых гигантов. Правда, зонд отправится в космос лишь через десять лет. Старт планируется осуществить в середине 2028 года — для этого будет использоваться новая ракета-носитель Ariane 6. Добавим, что летом прошлого года Европейское космическое агентство официально одобрило миссию PLATO (PLAnetary Transits and Oscillations of stars), главной целью которой станет поиск планет за пределами Солнечной системы. Запуск этого аппарата намечен на конец 2026 года.
  10. Команда исследователей под руководством Тэруюки Хирано (Teruyuki Hirano) с кафедры наук о Земле и планетах Токийского технологического института, Япония, подтвердила планетный статус 15 экзопланет-кандидатов, находящихся в системах красных карликов. Вокруг одного из самых ярких карликов, звезды K2-155, лежащей на расстоянии примерно 200 световых лет от нас, обращаются три транзитных планеты класса суперземель. Одна из этих суперземель, крайняя внешняя планета системы под названием K2-155d, имеющая радиус порядка 1,6 радиуса Земли, может находиться в обитаемой зоне звезды. Эти находки, опубликованные в форме двух новых научных работ, базируются на наблюдательных данных, собранных при помощи космического аппарата Kepler («Кеплер») НАСА, который выполняет в настоящее время расширенную миссию под названием K2, и данных дальнейших наблюдений, проведенных с использованием наземных телескопов, включая телескоп «Субару» (Гавайи) и Северный оптический телескоп (Испания). Согласно Хирано и его коллегам на поверхности планеты K2-155d может присутствовать вода в жидкой форме. Эти выводы базируются на результатах трехмерного компьютерного моделирования глобального климата планеты. Однако исходным допущением при моделировании было то, что состав планеты K2-155d подобен составу Земли, хотя на самом деле наблюдательных подтверждений этому получено не было, отмечают авторы работы. Для более корректной оценки обитаемости следует провести более точные оценки радиуса и температуры этой планеты, указывают они. Оба исследования опубликованы в журнале Astronomical Journal.
  11. Международная группа астрономов сообщает, что число обнаруженных экзопланет возросло почти на сотню, благодаря продолжающейся миссии K2 космического телескопа «Кеплер» аэрокосмического агентства NASA. Проанализировав последние данные, полученные с телескопа, ученые объявили об открытии еще 95 планет, что в целом повышает количество обнаруженных в рамках миссии K2 экзопланет почти до 300. «Мы начали анализ 275 кандидатов, 149 из которых впоследствии были подтверждены как экзопланеты. При этом 95 из них являются ранее неизвестными», — прокомментировал ведущий автор исследования Эндрю Майо из Датского технического университета. Напомним, что космическая миссия «Кеплер» была запущена в 2009 году. С тех пор телескоп кружит вокруг Солнца и пытается обнаружить новые экзопланеты с помощью транзитного метода наблюдения – время от времени фотографирует другие звезды и ищет изменения в их яркости. Если яркость снижается, а затем через какой-то промежуток времени обретает то же значение, то, вероятнее всего, это означает, что свет звезды периодично блокируется достаточно большим телом. Другими словами, возможно, планетой. Метод очень кропотливый и требует анализа огромного объема данных. Сначала необходимо выделить периоды изменения в яркости, а затем и подтвердить их. Кроме того, он работает только в том случае, если планета и звезда попадают в плоскость луча зрения наблюдателя (либо нас, либо же, как в данном случае, телескопа «Кеплер»). Тем не менее метод признается астрономами достаточно эффективным. Благодаря ему, отмечают в NASA, в рамках основной части миссии «Кеплер» обнаружил 5100 кандидатов и подтвердил существование 2341 экзопланеты. К сожалению, в 2013 году космический телескоп столкнулся с серьезной проблемой, когда один из его гироскопов, помогающих ориентироваться в пространстве, вышел из строя. Однако в NASA нашли способ, как продлить жизнь космическому наблюдателю. Для ориентации телескопа было решено использовать вспомогательные рулевые двигатели. Благодаря этому телескоп служит науке до сих пор. Данные, которые команда Майо использовала для анализа, были собраны телескопом еще в 2014 году. Ученым пришлось немало повозиться над тем, чтобы подтвердить, что отмеченные изменения яркости звезды не были вызваны другими возможными факторами. «Мы обнаружили, что источником некоторых сигналов являются сразу несколько звездных систем, а также электромагнитный шум самого космического аппарата. Но мы также обнаружили планеты, по размеру варьирующиеся от совсем маленьких землеподобных до размера с Юпитер и даже больше», — прокомментировал Майо. «Например, одна из планет, о которой ранее не было известно, находится у звезды HD 212657, расположенной примерно в 254 световых годах от нас. Она имеет 10-дневный орбитальный период вращения и находится у одной из самых ярких звезд, обнаруженных в рамках миссии «Кеплер» K2». Астрономы объясняют, что чем ярче звезда, тем больше мы можем узнать о планете, которая вокруг нее оборачивается. А в будущем, с запуском более мощных телескопов, сможем получать еще и более четкие изображения обнаруженных объектов. Вполне возможно, что благодаря новым технологиям ученые смогут получить даже информацию об атмосферах как уже обнаруженных экзопланет (например, системы TRAPPIST-1), так и тех объектов, которые еще только предстоит найти. Поиск экзопланет, конечно же, связан с желанием ученых найти внеземную жизнь. Но лишь отчасти. Здесь также важна и статистика, которая позволит хотя бы приблизительно понять, сколько вообще планет может иметься в космосе: сколько из них можно отнести к землеподобным, сколько – к газообразным. В конечном итоге это позволит узнать, насколько уникальна и уникальна ли вообще наша Солнечная система, а также то, каким образом она вписывается в общую картину Вселенной.
  12. «Охотник за экзопланетами» НАСА, космический телескоп Kepler («Кеплер») измеряет яркость звезд, вокруг которых могут обращаться планеты, прохождение которых перед звездой вызывает характерное снижение яркости светила. Для анализа данных наблюдений этого космического телескопа сначала компьютерная программа отбирает звезды, демонстрирующие временные снижения яркости, а затем астрономы вручную анализируют данные по каждой из отобранных звезд, чтобы определить, действительно ли эти снижения яркости относятся к экзопланетам. На протяжении трех лет в рамках расширенной миссии космического телескопа Kepler под названием K2 были проведены наблюдения 287309 звезд, и каждые несколько месяцев телескоп наблюдает еще по несколько десятков тысяч звезд. Кем же обрабатываются эти огромные количества данных? В рамках нового проекта под названием Exoplanet Explorers, разработанного учеными НАСА, астрономы-любители могут проводить поиск экзопланет, используя банк научных данных, полученных при помощи космического телескопа Kepler. Проект стартовал в начале апреля прошлого года, и уже за первые 48 часов работы проекта было получено свыше 2 миллионов результатов анализа данных от более чем 10000 пользователей. В новой научной работе группа астрономов во главе с Джесси Л. Кристиансен (Jessie L. Christiansen) проанализировала одну из наиболее перспективных планетных систем под названием K2-138, в которой по сведениям, предоставленным участниками проекта Exoplanet Explorers, находятся сразу 4 планеты. Проведя статистический анализ данных, Кристиансен и ее команда подтвердили, что сигнал «с очень большой вероятностью» соответствует наличию планет. Кроме того, исследователи обнаружили, что орбиты планет находятся в интересном математическом соотношении, называемом резонансом. Резонанс орбит в системе K2-138 означает, что орбитальные периоды соседних планет системы различаются ровно в два раза. Вдобавок исследователи обнаружили пятую планету в этой же цепочке резонансов, а также намеки на присутствие шестой планеты.
  13. В обсерватории ESO Ла Силья в Чили прошли первые наблюдения с передовой полнообзорной камерой MASCARA — Multi-site All-Sky CAmeRA. Соглашение об установке инструмента MASCARA было подписано Европейской Южной Обсерваторией (ESO) с Лейденским университетом в июне прошлого года. Это вторая установка данного типа — первая работает в северном полушарии в обсерватории Роке де лос Мучачос на острове Ла Пальма (Канарские острова). Инструмент представляет собой комплекс из пяти камер в термостатируемом контейнере. Общее поле зрения прибора охватывает почти всё небо в месте его установки. Система обладает гибкостью использования и высочайшей надёжностью. Главная задача камеры MASCARA — искать экзопланеты вокруг самых ярких звёзд неба, которые ещё не исследованы ни космическими, ни наземными программами. Для этого применяется так называемый метод транзитов. Система проводит многократные повторяющиеся измерения блеска тысяч звёзд и с помощью специального программного обеспечения выявляет в нём слабые периодические колебания, вызванные прохождениями планет перед дисками своих материнских светил. Целевая популяция планет, которые будут обнаруживаться с помощью MASCARA, — это в основном «горячие Юпитеры», то есть газовые гиганты, физически похожие на Юпитер, но обращающиеся вокруг своих родительских звёзд на очень близком расстоянии, с орбитальным периодом всего несколько часов. Но система также может искать сверхземли и планеты размеров Нептуна. Ожидается, что в результате наблюдений с новым инструментом будет создан каталог ярких околосолнечных объектов, которые затем можно было бы наблюдать с целью уточнения их характеристик, в частности, детально исследовать планетные атмосферы.
×
×
  • Создать...