Перейти к содержанию

Поиск

Показаны результаты для тегов 'природу'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Новости
    • Новости сервера
    • Новости спутниковых провайдеров
    • Новости цифровой техники
    • Новости спутников и космических технологий
    • Новости телеканалов
    • Новости операторов связи, кабельного и IPTV
    • Новости сети интернет и софта (software)
    • Архив новостей
  • IPTV
    • Обсуждение IPTV каналов
    • IPTV на iptv-приставках
    • IPTV на компьютере
    • IPTV на телевизорах Smart TV
    • IPTV на спутниковых ресиверах
    • IPTV на мобильных устройствах
    • Kodi (XBMC Media Center)
    • FAQ по IPTV
  • IPTV in English
    • FAQ (Manuals)
    • Price
    • Discussions
  • Cпутниковое ТВ
    • Основной раздел форума
    • Кардшаринг
    • Транспондерные новости, настройка антенн и приём
    • Dreambox/Tuxbox/IPBox/Sezam и др. на базе Linux
    • Ресиверы Android
    • Другие ресиверы
    • Galaxy Innovations (без OS Linux)
    • Обсуждение HD\UHD телевизоров и проекторов
    • DVB карты (SkyStar, TwinHan, Acorp, Prof и др.)
    • OpenBOX F-300, F-500, X540, X560, X590, X-800, X-810, X-820, S1
    • Openbox X-730, 750, 770CIPVR, 790CIPVR
    • OpenBOX 1700(100), 210(8100),6xx, PowerSky 8210
    • Golden Interstar
    • Globo
    • Спутниковый интернет/спутниковая рыбалка
  • Общий
    • Курилка
    • Барахолка

Категории

  • Dreambox/Tuxbox
    • Эмуляторы
    • Конфиги для эмуляторов
    • JTAG
    • Picons
    • DM500
    • DM600
    • DM7000
    • DM7020
    • Программы для работы с Dreambox
    • DM7025
    • DM500 HD
    • DM800 HD
    • DM800 HDSE
    • DM8000 HD
    • DM 7020 HD
    • DM800 HD SE v2
    • DM 7020 HD v2
    • DM 500 HD v2
    • DM 820 HD
    • DM 7080
    • DM 520/525HD
    • Dreambox DM 900 Ultra HD
    • Dreambox DM920 Ultra HD
  • Openbox HD / Skyway HD
    • Программы для Openbox S5/7/8 HD/Skyway HD
    • Addons (EMU)
    • Ключи
    • Skyway Light 2
    • Skyway Light 3
    • Skyway Classic 4
    • Skyway Nano 3
    • Openbox S7 HD PVR
    • Openbox S6 PRO+ HD
    • Openbox SX4C Base HD
    • Skyway Droid
    • Skyway Diamond
    • Skyway Platinum
    • Skyway Nano
    • Skyway Light
    • Skyway Classic
    • Openbox S6 HD PVR
    • Openbox S9 HD PVR
    • Skyway Classic 2
    • Openbox S4 PRO+ HDPVR
    • Openbox S8 HD PVR
    • Skyway Nano 2
    • Openbox SX6
    • Openbox S6 PRO HDPVR
    • Openbox S2 HD Mini
    • Openbox S6+ HD
    • Openbox S4 HD PVR
    • Skyway Classic 3
    • Openbox SX4 Base
    • Openbox S3 HD mini
    • Openbox SX4 Base+
    • Openbox SX9 Combo
    • Openbox AS1
    • Openbox AS2
    • Openbox SX4
    • Openbox SX9
    • Openbox S5 HD PVR
    • Formuler F3
    • Openbox Formuler F4
    • Openbox Prismcube Ruby
    • Skyway Droid 2
    • Openbox S2 HD
    • Openbox S3 HD Micro
    • Skyway Air
    • Skyway Virgo
    • Skyway Andromeda
    • Openbox S1 PVR
    • Formuler4Turbo
    • Open SX1 HD
    • Open SX2 HD
    • Openbox S3 HD mini II
    • Openbox SX2 Combo
    • Openbox S3HD CI II
  • Openbox AS4K/ AS4K CI
  • Opticum/Mut@nt 4K HD51
  • Mut@nt 4K HD60
  • Octagon SF4008 4K
  • OCTAGON SF8008 MINI 4K
  • Octagon SF8008 4K
  • GI ET11000 4K
  • Formuler 4K S Mini/Turbo
  • VU+ 4K
    • Прошивки VU+ Solo 4K
    • Прошивки VU+ Duo 4K
    • Прошивки VU+ UNO 4K
    • Прошивки VU+ Uno 4K SE
    • Прошивки VU+ Ultimo 4K
    • Прошивки VU+ Zero 4K
    • Эмуляторы VU+ 4K
    • Vu+ Duo 4K SE
  • Galaxy Innovations
    • GI 1115/1116
    • GI HD Slim Combo
    • GI HD Slim
    • GI HD Slim Plus
    • GI Phoenix
    • GI S9196Lite
    • GI S9196M HD
    • GI Spark 2
    • GI Spark 2 Combo
    • GI Spark 3 Combo
    • Программы для работы с Galaxy Innovations
    • Эмуляторы для Galaxy Innovations
    • GI S1013
    • GI S2020
    • GI S2028/S2026/2126/2464
    • GI S2030
    • GI S2050
    • GI S3489
    • GI ST9196/ST9195
    • GI S2121/1125/1126
    • GI S6199/S6699/ST7199/ST7699
    • GI S8290
    • GI S8680
    • GI S8120
    • GI S2138 HD
    • GI S2628
    • GI S6126
    • GI S1025
    • GI S8895 Vu+ UNO
    • GI Vu+ Ultimo
    • GI S2238
    • GI Matrix 2
    • GI HD Mini
    • GI S2038
    • GI HD Micro
    • GI HD Matrix Lite
    • GI S1027
    • GI S1015/S1016
    • GI S9895 HD Vu+ Duo
    • GI S8180 HD Vu+ Solo
    • Vu+ SOLO 2
    • Vu+ Solo SE
    • Vu+ Duo 2
    • Vu+ Zero
    • GI ET7000 Mini
    • GI Sunbird
    • GI 2236 Plus
    • GI HD Micro Plus
    • GI HD Mini Plus
    • GI Fly
    • GI HD Slim 2
    • GI HD Slim 2+
    • GI HD Slim 3
    • GI HD Slim 3+
  • IPBox HD / Sezam HD / Cuberevo HD
    • Программы для работы с IPBox/Sezam
    • IPBox 9000HD / Sezam 9100HD / Cuberevo
    • IPBox 900HD / Cuberevo Mini
    • IPBox 910HD / Sezam 902HD / Sezam 901HD
    • IPBox 91HD / Sezam 900HD / Cuberevo 250HD
    • Addons
  • HD Box
    • HD BOX 3500 BASE
    • HD BOX 3500 CI+
    • HD BOX 4500 CI+
    • HD BOX 7500 CI+
    • HD BOX 9500 CI+
    • HD BOX SUPREMO
    • HD BOX SUPREMO 2
    • HD BOX TIVIAR ALPHA Plus
    • HD BOX TIVIAR MINI HD
    • HD BOX HB 2017
    • HD BOX HB 2018
    • HD BOX HB S100
    • HD BOX HB S200
    • HD BOX HB S400
  • Star Track
    • StarTrack SRT 100 HD Plus
    • StarTrack SRT 300 HD Plus
    • StarTrack SRT 2014 HD DELUXE CI+
    • StarTrack SRT 3030 HD Monster
    • StarTrack SRT 400 HD Plus
    • StarTrack SRT 200 HD Plus
  • Samsung SmartTV SamyGo
  • DVB карты
    • DVBDream
    • ProgDVB
    • AltDVB
    • MyTheatre
    • Плагины
    • DVBViewer
    • Кодеки
    • Драйвера
  • Openbox F-300, X-8XX, F-500, X-5XX
    • Программы для работы с Openbox
    • Ключи для Openbox
    • Готовые списки каналов
    • Все для LancomBox
    • Openbox F-300
    • Openbox X-800
    • Openbox X-810
    • Openbox X-820
    • Openbox F-500
    • Openbox X-540
    • Openbox X-560
    • Openbox X-590
  • Openbox X-730PVR, X-750PVR, X-770CIPVR, X-790CIPVR
    • Программы для работы с Openbox
    • Ключи
    • Openbox X-730PVR
    • Openbox X-750PVR
    • Openbox X-770CIPVR
    • Openbox X-790CIPVR
  • OpenBOX 1700[100], 210[8100], 6xx, PowerSky 8210
    • Программы для работы с Openbox/Orion/Ferguson
    • BOOT
    • Ключи
    • OpenBOX 1700[100]
    • OpenBOX 210[8100]
    • OpenBOX X600 CN
    • OpenBOX X610/620 CNCI
    • PowerSky 8210
  • Globo
    • Globo HD XTS703p
    • Программы для работы с Globo
    • Ключи для Globo
    • Globo 3xx, 6xxx
    • Globo 4xxx
    • Globo 7010,7100 A /plus
    • Globo 7010CI
    • Globo 7010CR
    • Ferguson Ariva 100 & 200 HD
    • Opticum 8000
    • Opticum 9000 HD
    • Opticum 9500 HD
    • Globo HD S1
    • Opticum X10P/X11p
    • Opticum HD 9600
    • Globo HD X403P
    • Opticum HD X405p/406
    • Opticum X80, X80RF
  • Golden Interstar
    • Программы для работы с Interstar
    • Все для кардшаринга на Interstar
    • BOOT
    • Ключи
    • Golden Interstar DSR8001PR-S
    • Golden Interstar DSR8005CIPR-S
    • Golden Interstar DSR7700PR
    • Golden Interstar DSR7800SRCIPR
    • Golden Interstar TS8200CRCIPR
    • Golden Interstar TS8300CIPR-S
    • Golden Interstar TS8700CRCIPR
    • Golden Interstar S100/S801
    • Golden Interstar S805CI
    • Golden Interstar S770CR
    • Golden Interstar S780CRCI
    • Golden Interstar TS830CI
    • Golden Interstar TS870CI
    • Golden Interstar TS84CI_PVR
    • Golden Interstar S890CRCI_HD
    • Golden Interstar S980 CRCI HD
    • Golden Interstar GI-S900CI HD
    • Golden Interstar S905 HD
    • Box 500
  • SkyGate
    • Программы для работы с ресиверами SkyGate
    • Списки каналов и ключей
    • SkyGate@net
    • SkyGate HD
    • SkyGate HD Plus
    • SkyGate Gloss
    • Sky Gate HD Shift
  • Samsung 9500
    • Программы для работы с Samsung 9500
    • Программное обеспечение для Samsung 9500
  • Openbox 7200
    • Прошивки
    • Эмуляторы
    • Программы для работы с Openbox 7200
    • Списки каналов
  • Season Interface
  • Прошивки для приставок MAG

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


Найдено: 5 результатов

  1. Мэтт Трушейм включает рубильник в темной лаборатории, и мощный зеленый лазер подсвечивает крошечный алмаз, удерживаемый на месте под объективом микроскопа. На экране компьютера появляется изображение, диффузное газовое облако, усеянное яркими зелеными точками. Эти светящиеся точки — крошечные дефекты внутри алмаза, в которых два атома углерода заменены одним атомом олова. Свет лазера, проходя через них, переходит из одного оттенка зеленого в другой. Позже этот алмаз будет охлажден до температуры жидкого гелия. Контролируя кристаллическую структуру алмаза атом за атомом, доводя его до нескольких градусов выше абсолютного нуля и применяя магнитное поле, исследователи из Лаборатории квантовой фотоники под руководством физика Дирка Энглунда в Массачусетском технологическом институте думают, что могут с такой точностью выбрать квантово-механические свойства фотонов и электронов, что им удастся передать невзламываемые секретные коды. Трушейм — один из множества ученых, которые пытаются выяснить, какие атомы, заключенные в кристаллах, при каких условиях позволят им получить контроль такого уровня. По сути, ученые по всему миру пытаются научиться управлять природой на уровне атомов и ниже, до электронов или даже доли электрона. Их цель — найти узлы, которые контролируют фундаментальные свойства вещества и энергии, и затянуть или распутать эти узлы, изменив вещество и энергию, создать сверхмощные квантовые компьютеры или сверхпроводники, работающие при комнатной температуре. Эти ученые сталкиваются с двумя основными проблемами. На техническом уровне проводить такие работы очень сложно. Некоторые кристаллы, например, должны быть на 99,99999999% чистыми в вакуумных камерах чище космоса. Еще более фундаментальная задача в том, что квантовые эффекты, которые хотят обуздать ученые, — например, способность частицы находиться в двух состояниях одновременно, подобно коту Шрёдингера — проявляются на уровне отдельных электронов. В макромире эта магия рушится. Следовательно, ученым приходится манипулировать веществом в мельчайших масштабах, и они ограничены пределами фундаментальной физики. От их успеха зависит, как изменится наше понимание науки и технологических возможностей в грядущие десятилетия. Мечта алхимика Манипулирование веществом, до определенной степени, состоит в управлении электронами. В конце концов, поведение электронов в веществе определяет его свойства в целом — будет это вещество металлом, проводником, магнитом или чем-нибудь еще. Некоторые ученые пытаются изменить коллективное поведение электронов, создав квантовое синтетическое вещество. Ученые видят, как «мы берем изолятор и превращаем его в металл или полупроводник, а затем в сверхпроводник. Мы можем превратить немагнитный материал в магнитный», говорит физик Ева Андрей из Университета Рутгерса. «Это исполнение мечты алхимика». И эта мечта может привести к настоящим прорывам. К примеру, ученые на протяжении десятилетий пытались создать сверхпроводники, работающие при комнатной температуре. С помощью этих материалов можно было бы создавать линии электропередач, не теряющие энергию. В 1957 году физики Джон Бардин, Леон Купер и Джон Роберт Шриффер продемонстрировали, что сверхпроводимость появляется, когда свободные электроны в металле вроде алюминия выравниваются в так называемые пары Купера. Даже находясь относительно далеко, каждый электрон соответствовал другому, обладающему противоположным спином и импульсом. Словно пары, танцующие в толпе на дискотеке, спаренные электроны двигаются в координации с другими, даже если другие электроны проходят между ними. Это выравнивание позволяет току течь через материал, не встречая сопротивления, а значит, и без потерь. Самые практичные сверхпроводники, разработанные к нынешнему моменту, должны быть при температуре чуть выше абсолютного нуля, чтобы это состояние сохранялось. Впрочем, исключения могут быть. В последнее время исследователи обнаружили, что обстреливание материала высокоинтенсивным лазером также может сбивать электроны в куперовские пары, пусть и ненадолго. Андреа Каваллери из Института строения и динамики материи Макса Планка в Гамбурге, Германия, и его коллеги обнаружили признаки фотоиндуцированной сверхпроводимости в металлах и изоляторах. Свет, поражая материал, заставляет атомы вибрировать, и электроны ненадолго входят в состояние сверхпроводимости. «Встряска должна быть ожесточенной», говорит Дэвид Эси, физик конденсированных веществ в Калифорнийском технологическом институте, который использует такую же лазерную технику для проявления необычных квантовых эффектов в других материалах. «На мгновение электрическое поле становится очень сильным — но только на короткое время». Невзламываемые коды Управление электронами — вот как Трушейм и Энглунд намереваются разработать невзламываемое квантовое шифрование. В их случае цель не в том, чтобы менять свойства материалов, но передавать квантовые свойства электронов в дизайнерских алмазах фотонам, которые передают криптографические ключи. В цветовых центрах алмазах в лаборатории Энглунда расположены свободные электроны, спины которых можно измерить при помощи сильного магнитного поля. Спин, который выравнивается с полем, можно назвать спином 1, спин, который не выравнивается, — спином 2, что будет эквивалентно 1 и 0 в цифровом бите. «Это квантовая частица, поэтому она может быть в обоих состояниях одновременно», говорит Энглунд. Квантовый бит, или кубит, способен производить множество вычислений одновременно. Именно здесь рождается загадочное свойство — квантовая запутанность. Представьте себе коробку, содержащую красный и синий шарики. Вы можете взять один не глядя и сунуть в карман, а затем уехать в другой город. Затем вынуть шарик из кармана и обнаружить, что он красный. Вы сразу поймете, что в коробке остался синий шарик. Это запутанность. В квантовом мире этот эффект позволяет передавать информацию мгновенно и на большие расстояния. Цветные центры в алмазе в лаборатории Энглунда передают квантовые состояния электронов, заключенных в них, фотонам при помощи запутанности, создавая «летающие кубиты», как их называет Энглунд. В обычных оптических коммуникациях фотон можно передать получателю — в данном случае другой вакантной пустоте в алмазе — и его квантовое состояние будет передано новому электрону, поэтому два электрона будут связаны. Передача таких запутанных битов позволит двум людям разделить криптографический ключ. «У каждого есть строка нулей и единиц, или верхних и нижних спинов, которые кажутся совершенно случайными, но они идентичны», говорит Энглунд. Используя этот ключ для шифрования передаваемых данных, можно сделать их абсолютно защищенными. Если кто-то захочет перехватить передачу, отправитель будет об этом знать, поскольку акт измерения квантового состояния изменит ее. Энглунд экспериментирует с квантовой сетью, которая посылает фотоны по оптоволокну через его лабораторию, объект ниже по дороге в Гарвардском университете и другую лабораторию Массачусетского технологического института в соседнем городе Лексингтон. Ученые уже преуспели в передаче квантово-криптографических ключей на большие расстояния — в 2017 году китайские ученые сообщили, что передали такой ключ со спутника на орбите Земли на две наземные станции в 1200 километрах друг от друга на горах Тибета. Но битрейт китайского эксперимента был слишком низким для практических коммуникаций: ученые зафиксировали только одну запутанную пару из шести миллионов. Инновация, которая сделает криптографические квантовые сети на земле практичными, — это квантовые повторители, устройства, размещенные с интервалами в сети, которые усиливают сигнал, не меняя его квантовых свойств. Цель Энглунда — найти материалы с подходящими атомными дефектами, чтобы из них можно было создать эти квантовые повторители. Трюк в том, чтобы создать достаточно запутанных фотонов для переноса данных. Электрон в азотозамещенной вакансии поддерживает свой спин достаточно долго — около секунды — что увеличивает шансы на то, что свет лазера пройдет через него и произведет запутанный фотон. Но атом азота маленький и не заполняет пространство, созданное отсутствием углерода. Поэтому последовательные фотоны могут быть слегка разных цветов, а значит, и потеряют соответствие. Другие атомы, олово, например, прилегают плотно и создают стабильную длину волны. Но они не смогут удерживать спин достаточно долго — следовательно, ведется работа по поиску идеального равновесия. Рассеченные концы Пока Энглунд и другие пытаются совладать с отдельными электронами, другие ныряют еще глубже в квантовый мир и пытаются манипулировать уже долями электронов. Эта работа уходит корнями в эксперимент 1982 года, когда ученые из Лаборатории Белла и Национальной лаборатории Лоуренса Ливермора сделали сэндвич из двух слоев разных полупроводниковых кристаллов, охладили их почти до абсолютного нуля и применили к ним сильное магнитное поле, заточив электроны в плоскости между двумя слоями кристаллов. Так сформировался своего рода квантовый бульон, в котором движение любого отдельного электрона определялось зарядами, которые он ощущал от других электронов. «Это уже не отдельные частицы сами по себе», говорит Майкл Манфра из Университета Пердью. «Вообразите себе балет, в котором каждый танцор не только делает собственные па, но и реагирует на движение партнера или других танцоров. Это в некотором роде общий ответ». Странно во всем этом то, что у такой коллекции могут быть дробные заряды. Электрон — это неделимая единица, ее не разрежешь на три части, но группа электронов в нужном состоянии может произвести так называемую квазичастицу с 1/3 заряда. «Будто электроны делятся на части», говорит Мохаммед Хафези, физик из Joint Quantum Institute. «Это очень странно». Хафези создал этот эффект в сверххолодном графене, одноатомном слое углерода, и недавно показал, что может манипулировать движением квазичастиц, подсвечивая графен лазером. «Теперь это контролируется», говорит он. «Внешними узелками, такими как магнитным полем и светом, можно управлять, подтягивать или распускать. Меняется природа коллективных изменений». Манипуляции с квазичастицами позволяют создать особый тип кубита — топологический кубит. Топология — это область математики, изучающая свойства объекта, которые не меняются, даже если этот объект скручивается или деформируется. Стандартный пример — пончик: если бы он был идеально эластичным, его можно было бы переформировать в кофейную чашку, ничего особо не меняя; дырка в пончике будет играть новую роль в отверстии в ручке чашки. Однако, чтобы превратить пончик в крендель, придется добавить ему новых дыр, меняя его топологию. Топологический кубит сохраняет свои свойства даже при изменяющихся условиях. Обычно частицы меняют свои квантовые состояния, или «декогерируют», когда нарушается что-то в их окружении, вроде небольших вибраций, вызванных теплом. Но если вы сделаете кубит из двух квазичастиц, разделенных некоторым расстоянием, скажем, на противоположных концах нанопроволоки, вы по сути расщепите электрон. Обе «половинки» должны будут испытать одно и то же нарушение, чтобы декогерировать, а такое маловероятно, что произойдет. Это свойство делает топологические кубиты привлекательными для квантовых компьютеров. Из-за способности кубита быть в суперпозиции множества состояний одновременно, квантовые компьютеры должны быть способными производить практически невозможные без них вычисления, например, моделировать Большой Взрыв. Манфра, по сути, пытается создать квантовые компьютеры из топологических кубитов в Microsoft. Но есть и более простые подходы. Google и IBM, по сути, пытаются создать квантовые компьютеры на основе переохлажденных проводов, которые становятся полупроводниками, или ионизированных атомов в вакуумной камере, удерживаемых лазерами. Проблема таких подходов в том, что они в большей степени чувствительны к изменениям окружающей среды, чем топологические кубиты, особенно если число кубитов растет. Таким образом, топологические кубиты могут привести к революции в нашей способности манипулировать крошечными вещами. Однако есть одна существенная проблема: их пока не существует. Исследователи изо всех сил пытаются создать их из так называемых майорановских частиц. Предложенная Этторе Майораной в 1937 году, эта частица является сама себе античастицей. Электрон и его античастица, позитрон, имеют идентичные свойства, кроме заряда, но заряд майорановской частицы будет равен нулю. Ученые полагают, что определенные конфигурации электронов и дырок (отсутствие электронов) могут вести себя как майорановские частицы. Их, в свою очередь, можно использовать в качестве топологических кубитов. В 2012 году физик Лео Коувенховен из Технологического университета Делфта в Нидерландах и его коллеги измерили то, что показалось им майорановскими частицами в сети сверхпроводниковых и полупроводниковых нанопроводов. Но единственным способом доказать существовать этих квазичастиц будет создание топологического кубита на их основе. Другие эксперты в этой области настроены более оптимистично. «Думаю, что без каких-либо вопросов кто-то однажды создаст топологический кубит, просто ради интереса», говорит Стив Саймон, теоретик конденсированных веществ в Оксфордском университете. «Вопрос лишь в том, сможем ли мы сделать из них квантовый компьютер будущего». Квантовые компьютеры — равно как и высокотемпературные сверхпроводники и невзламываемое квантовое шифрование — могут появиться через много лет или не появиться никогда. Но в то же время ученые пытаются расшифровать загадки природы в мельчайших масштабах. Пока никто не знает, насколько далеко удастся зайти. Чем глубже мы проникаем в мельчайшие составляющие нашей Вселенной, тем сильнее они нас выталкивают.
  2. В темном безбрежном космосе постоянно происходит большое число взрывов. Одно из таких событий, называемое быстро эволюционирующей световой вспышкой (Fast-Evolving Luminous Transient, FELT), ставило в тупик астрономов на протяжении десятилетия из-за малой продолжительности. Теперь космический телескоп НАСА Kepler («Кеплер») – построенный для «охоты на планеты», лежащие на орбитах вокруг звезд нашей Галактики – был также использован для наблюдения вспышки типа FELT и выяснения ее происхождения. Способность телескопа Kepler измерять малейшие изменения потока света, идущего от звезды, позволила астрономам быстро подобрать нужную модель этого явления и исключить альтернативные ей сценарии. Исследователи пришли к выводу, что источником вспышки является звезда, которая коллапсирует и взрывается как сверхновая. Отличие ее от классических сверхновых состоит в том, что звезда окружена одной или более оболочками из газа и пыли. Когда ударная волна от взрыва звезды врезается в эти оболочки, большая часть кинетической энергии превращается в свет. Эта вспышка продолжается в течение всего лишь нескольких суток – в то время как обычная сверхновая освещает небо примерно в 10 раз дольше. Ранее для объяснения вспышек FELT-типа предлагались различные гипотезы: источниками этих явлений называли послесвечение гамма-всплесков; взаимодействие сверхновой и магнетара (нейтронной звезды с мощным магнитным полем) или «неудавшиеся» сверхновые типа Ia. Все эти гипотезы позволили исключить новые данные, собранные при помощи космического телескопа Kepler. Исследование представлено в журнале Nature Astronomy.
  3. В 1980-х гг. были открыты экстремально яркие рентгеновские источники, расположенные во внешних областях галактик, вдали от сверхмассивных черных дыр, лежащих в их центрах. Сначала исследователи считали, что эти космические объекты, получившие название сверхярких рентгеновских источников (ultraluminous X-ray sources, ULXs), представляют собой массивные черные дыры, массами свыше 10 масс Солнца. Однако наблюдения, начатые в 2014 г. при помощи обсерватории НАСА NuSTAR и других космических телескопов, показали, что некоторые из ULX-источников, яркость которых в рентгеновском диапазоне сравнима с яркостью миллионов Солнц, на самом деле представляют собой нейтронные звезды – ядра сгоревших массивных звезд, вспыхнувших как сверхновые. К настоящему времени три ULX-источника были отождествлены с нейтронными звездами. В новом исследовании астрономы во главе с Мюрреем Брайтмэном (Murray Brightman) из Калифорнийского технологического института, США, используя данные наблюдений, проведенных при помощи космической рентгеновской обсерватории НАСА Chandra («Чандра»), идентифицировали четвертый по счету ULX-источник как нейтронную звезду – и получили новые подробности о природе этих загадочных объектов. Наблюдая ULX-источник, расположенный в галактике Вертушка, или М51, лежащей на расстоянии примерно 28 миллионов световых лет от нас, команда Брайтмэна выяснила, что эта нейтронная звезда может иметь мощное магнитное поле, благодаря которому преодолеваются силы светового давления, действующие на материю, аккрецируемую нейтронной звездой, и падение материи облегчается, в результате чего яркость источника, обусловленная выделением гравитационной энергии, резко возрастает.
  4. Изучение нескольких десятков галактик, находящихся в радиусе нескольких миллиардов световых лет от нашей собственной, позволило открыть несколько черных дыр, которые многократно превышают наши ожидания по поводу того, насколько большими они могут вырастать. Последнее исследование не только помогает нам лучше понять эволюцию этих загадочных астрофизических объектов, но и открывает для нас новые интересные вопросы. Например, каким образом черные дыры становятся настолько невероятно массивными? Черные дыры, представляющие собой результат звездного коллапса, не нуждаются в представлении. Мы слышали о том, что они вызывают возмущения пространства-времени, наблюдали за их «отрыжкой» и даже, возможно, впервые в истории сможем увидеть своими глазами одну из них в этом году. Ученым очень интересны черные дыры, и на это есть вполне понятная причина. «Что такое галактики? Это «кирпичики», объединяющиеся в общую картину Вселенной. И чтобы понять, как они формируются и эволюционируют, мы сперва должны понять, как работают черные дыры», — говорит физик Джулия Хлавачек-Ларрондо из Монреальского университета (Канада). Не то чтобы черные дыры сами упрощали эту работу – весьма сложно разобраться в том, что невозможно (как нам кажется) увидеть напрямую. Поэтому астрофизики ищут иные зацепки, которые позволили бы копнуть глубже. Одно из направлений – поиск связи между массами черных дыр и галактик, в которых они находятся. Если бы у нас был простой способ, позволяющий сопоставить размер галактик с находящимися в их центрах черными дырами, то, по мнению ученых, это сэкономило бы нам кучу времени и усилий по исследованию как первых, так и вторых. Поэтому Хлавачек-Ларрондо, объединив усилия с другими учеными из Канады, Испании и Великобритании, провела исследование 72 галактик, расположенных в радиусе 3,5 миллиарда световых лет от нас, в надежде прийти к какой-то общей формуле, которая могла бы упростить определение массы черных дыр в галактических центрах. О своих наблюдениях ученые поделились в журнале Monthly Notices of the Royal Astronomical Society. Для оценки размера самих черных дыр команда исследователей проводила анализ спектра рентгеновского излучения, вырывающегося из вихревых потоков раскаленного газа аккреционных дисков черных дыр, а затем сопоставляли цифры с общим уровнем яркости окружающей галактики. Согласно довольно популярной гипотезе, чем больше сама галактика, тем больше может быть и сама черная дыра, находящаяся в ее центре, – но на практике все оказалось не так просто, как ожидалось. «Мы обнаружили, что черные дыры могут быть гораздо больше предполагаемых уставных размеров», — прокомментировал ведущий автор исследования Мар Мезкуа из Института космических наук в Испании. Вместо ожидаемой корреляции в массе и размере со своими галактиками некоторое число черных дыр продемонстрировало гораздо более быстрый рост и набор массы по сравнению с остальным окружающим их пространством. Оказалось, что около 40 процентов исследованных черных дыр обладают массой, в 10 и более миллиардов раз превосходящей массу Солнца. Здесь правда следует уточнить, что никаких рекордов по массе зафиксировано не было, и первенство по-прежнему принадлежит черной дыре галактики NGC 4889, чья масса эквивалентна 21 миллиарду солнечных масс. Кроме того, есть подозрения, что галактика S5 0014+81, расположенная в 12,1 миллиарда световых лет от нас, содержит настоящего монстра с массой около 40 миллиардов Солнц. Но тем не менее такое большое число сверхмассивных черных дыр заставило ученых задуматься о том, как они такими становятся. Исследователи имеют два предположения на этот счет: либо эти черные дыры изначально появились очень большими, а затем в буквальном смысле притянули большую часть материи галактики вокруг себя, либо же в наших знаниях о том, как галактики производят черные дыры, имеются серьезные пробелы. «Они такие большие, потому что сразу такими появились, или же в этом им помогли идеальные условия, позволявшие очень быстро расти в течение нескольких миллиардов лет? В настоящий момент мы не можем ответить на этот вопрос», — говорит Мезкуа. Однако ответ на этот вопрос может содержаться в другом исследовании, опубликованном в крупнейшей онлайн-библиотеке научных работ arXiv.org и ожидающем проверки. В его ходе ученые изучили более 30 000 галактик, расположенных в радиусе 12,2 миллиарда световых лет, и обнаружили, что соотношение показателя роста черных дыр и темпов роста звезд ускорялось с ростом самих галактик, в которых находились исследуемые объекты. Другими словами, у галактик с большим количеством звезд черные дыры оказывались всегда «прожорливее». Более обобщающим выводом из этих исследований является то, что связь между звездообразованием и черными дырами действительно имеется, и она очень запутанная. Безусловно, потребуется еще не один десяток исследований для того, чтобы лучше в ней разобраться. Но одна вещь становится понятной уже сейчас – без этих гигантов наша Вселенная выглядела бы совсем по-другому.
  5. Телеканал "Живая Планета" вышел в эфир в новом эфирном оформлении. Серией 20-секундных роликов редакция канала визуализирует слоган, который объявила год назад: "Природу делают люди". На новый дизайн команду телеканала вдохновило разнообразие природы. В 16 промороликах перед зрителем появляется фламинго, слон, хамелеон, лошадь. Интересно, что на самом деле на экране не животные, а ладони ведущих канала, расписанные художником. Команда телеканала готовила серию промороликов c января по март. Продюсер, режиссер и художник по боди-арту детально продумывали проморолики, чтобы достичь максимального сходства расписанных человеческих рук с животными. Художник даже пересчитал количество полос на зебрах. "Полосы на морде зебры меняют направление. Это выглядит очень красиво в природе, но раскрас очень непросто повторить на человеческой руке. Полосы расходятся от носа зебры в разные стороны, а в межбровье образуют ромб. Чтобы сделать из ладоней объемную лошадь, на одну руку я нанесла 30 полос. А из другой сделала черный гребень — челку животного", — говорит о подготовке к съемке художник Анна Бойчак, отвечавшая на площадке за боди-арт. Во время съемок промо художник превратила в животных руки Александра Хабургаева, Элеоноры Любимовой, Дмитрия Голубева, Тимофея Баженова и других ведущих телеканала. "Мы хотели стильно и интересно, современно визуализировать наш манифест "Природу делают люди". И нам важно, что наша картинка в данном случае — полностью живая. Не нарисованная компьютерная графика, а теплая, настоящая и одновременно сказочная. В новых роликах вы увидите буквально, как люди делают природу своими руками", — прокомментировала новое оформление Мария Моргун, главный редактор "Живой Планеты". В апреле серия промо "Природу делают люди" будет дополнена роликами со слоном, собакой и пингвином. Также в следующих видео канал раскроет карты: кто из ведущих снимался в каждом ролике. "Живая Планета" — главный национальный телеканал о природе. Основу контента составляют документальные фильмы собственного производства. "Живая Планета" рассказывает о жизни дальневосточного леопарда, амурского тигра и рыбного филина. Мы показываем настоящую работу ветеринаров, учим выживать в дикой природе и бережно к ней относиться. Канал начал вещание с марта 2015 года. Входит в познавательную линейку цифрового пакета "Цифрового телевидения". Аудитория "Живой Планеты" — более 14 млн зрителей.
×
×
  • Создать...